MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvmulfval Structured version   Visualization version   GIF version

Theorem mvmulfval 21691
Description: Functional value of the matrix vector multiplication operator. (Contributed by AV, 23-Feb-2019.)
Hypotheses
Ref Expression
mvmulfval.x × = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
mvmulfval.b 𝐵 = (Base‘𝑅)
mvmulfval.t · = (.r𝑅)
mvmulfval.r (𝜑𝑅𝑉)
mvmulfval.m (𝜑𝑀 ∈ Fin)
mvmulfval.n (𝜑𝑁 ∈ Fin)
Assertion
Ref Expression
mvmulfval (𝜑× = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))))
Distinct variable groups:   𝑖,𝑗,𝑥,𝑦,𝜑   𝑖,𝑀,𝑗,𝑥,𝑦   𝑖,𝑁,𝑗,𝑥,𝑦   𝑅,𝑖,𝑗,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥, · ,𝑦,𝑖
Allowed substitution hints:   𝐵(𝑖,𝑗)   · (𝑗)   × (𝑥,𝑦,𝑖,𝑗)   𝑉(𝑥,𝑦,𝑖,𝑗)

Proof of Theorem mvmulfval
Dummy variables 𝑚 𝑛 𝑜 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvmulfval.x . 2 × = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
2 df-mvmul 21690 . . . 4 maVecMul = (𝑟 ∈ V, 𝑜 ∈ V ↦ (1st𝑜) / 𝑚(2nd𝑜) / 𝑛(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m 𝑛) ↦ (𝑖𝑚 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))))))
32a1i 11 . . 3 (𝜑 → maVecMul = (𝑟 ∈ V, 𝑜 ∈ V ↦ (1st𝑜) / 𝑚(2nd𝑜) / 𝑛(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m 𝑛) ↦ (𝑖𝑚 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗))))))))
4 fvex 6787 . . . . 5 (1st𝑜) ∈ V
5 fvex 6787 . . . . 5 (2nd𝑜) ∈ V
6 xpeq12 5614 . . . . . . 7 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → (𝑚 × 𝑛) = ((1st𝑜) × (2nd𝑜)))
76oveq2d 7291 . . . . . 6 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → ((Base‘𝑟) ↑m (𝑚 × 𝑛)) = ((Base‘𝑟) ↑m ((1st𝑜) × (2nd𝑜))))
8 oveq2 7283 . . . . . . 7 (𝑛 = (2nd𝑜) → ((Base‘𝑟) ↑m 𝑛) = ((Base‘𝑟) ↑m (2nd𝑜)))
98adantl 482 . . . . . 6 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → ((Base‘𝑟) ↑m 𝑛) = ((Base‘𝑟) ↑m (2nd𝑜)))
10 simpl 483 . . . . . . 7 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → 𝑚 = (1st𝑜))
11 simpr 485 . . . . . . . . 9 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → 𝑛 = (2nd𝑜))
1211mpteq1d 5169 . . . . . . . 8 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗))) = (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗))))
1312oveq2d 7291 . . . . . . 7 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))) = (𝑟 Σg (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))))
1410, 13mpteq12dv 5165 . . . . . 6 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → (𝑖𝑚 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗))))) = (𝑖 ∈ (1st𝑜) ↦ (𝑟 Σg (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗))))))
157, 9, 14mpoeq123dv 7350 . . . . 5 ((𝑚 = (1st𝑜) ∧ 𝑛 = (2nd𝑜)) → (𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m 𝑛) ↦ (𝑖𝑚 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))))) = (𝑥 ∈ ((Base‘𝑟) ↑m ((1st𝑜) × (2nd𝑜))), 𝑦 ∈ ((Base‘𝑟) ↑m (2nd𝑜)) ↦ (𝑖 ∈ (1st𝑜) ↦ (𝑟 Σg (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))))))
164, 5, 15csbie2 3874 . . . 4 (1st𝑜) / 𝑚(2nd𝑜) / 𝑛(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m 𝑛) ↦ (𝑖𝑚 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))))) = (𝑥 ∈ ((Base‘𝑟) ↑m ((1st𝑜) × (2nd𝑜))), 𝑦 ∈ ((Base‘𝑟) ↑m (2nd𝑜)) ↦ (𝑖 ∈ (1st𝑜) ↦ (𝑟 Σg (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗))))))
17 simprl 768 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → 𝑟 = 𝑅)
1817fveq2d 6778 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (Base‘𝑟) = (Base‘𝑅))
19 mvmulfval.b . . . . . . 7 𝐵 = (Base‘𝑅)
2018, 19eqtr4di 2796 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (Base‘𝑟) = 𝐵)
21 fveq2 6774 . . . . . . . . 9 (𝑜 = ⟨𝑀, 𝑁⟩ → (1st𝑜) = (1st ‘⟨𝑀, 𝑁⟩))
2221ad2antll 726 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (1st𝑜) = (1st ‘⟨𝑀, 𝑁⟩))
23 mvmulfval.m . . . . . . . . . 10 (𝜑𝑀 ∈ Fin)
24 mvmulfval.n . . . . . . . . . 10 (𝜑𝑁 ∈ Fin)
25 op1stg 7843 . . . . . . . . . 10 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
2623, 24, 25syl2anc 584 . . . . . . . . 9 (𝜑 → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
2726adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
2822, 27eqtrd 2778 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (1st𝑜) = 𝑀)
29 fveq2 6774 . . . . . . . . 9 (𝑜 = ⟨𝑀, 𝑁⟩ → (2nd𝑜) = (2nd ‘⟨𝑀, 𝑁⟩))
3029ad2antll 726 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (2nd𝑜) = (2nd ‘⟨𝑀, 𝑁⟩))
31 op2ndg 7844 . . . . . . . . . 10 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
3223, 24, 31syl2anc 584 . . . . . . . . 9 (𝜑 → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
3332adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
3430, 33eqtrd 2778 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (2nd𝑜) = 𝑁)
3528, 34xpeq12d 5620 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → ((1st𝑜) × (2nd𝑜)) = (𝑀 × 𝑁))
3620, 35oveq12d 7293 . . . . 5 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → ((Base‘𝑟) ↑m ((1st𝑜) × (2nd𝑜))) = (𝐵m (𝑀 × 𝑁)))
3720, 34oveq12d 7293 . . . . 5 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → ((Base‘𝑟) ↑m (2nd𝑜)) = (𝐵m 𝑁))
38 fveq2 6774 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
3938adantr 481 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩) → (.r𝑟) = (.r𝑅))
4039adantl 482 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (.r𝑟) = (.r𝑅))
41 mvmulfval.t . . . . . . . . . 10 · = (.r𝑅)
4240, 41eqtr4di 2796 . . . . . . . . 9 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (.r𝑟) = · )
4342oveqd 7292 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)) = ((𝑖𝑥𝑗) · (𝑦𝑗)))
4434, 43mpteq12dv 5165 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗))) = (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗))))
4517, 44oveq12d 7293 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (𝑟 Σg (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))
4628, 45mpteq12dv 5165 . . . . 5 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (𝑖 ∈ (1st𝑜) ↦ (𝑟 Σg (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗))))) = (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗))))))
4736, 37, 46mpoeq123dv 7350 . . . 4 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (𝑥 ∈ ((Base‘𝑟) ↑m ((1st𝑜) × (2nd𝑜))), 𝑦 ∈ ((Base‘𝑟) ↑m (2nd𝑜)) ↦ (𝑖 ∈ (1st𝑜) ↦ (𝑟 Σg (𝑗 ∈ (2nd𝑜) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))))) = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))))
4816, 47eqtrid 2790 . . 3 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁⟩)) → (1st𝑜) / 𝑚(2nd𝑜) / 𝑛(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m 𝑛) ↦ (𝑖𝑚 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))))) = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))))
49 mvmulfval.r . . . 4 (𝜑𝑅𝑉)
5049elexd 3452 . . 3 (𝜑𝑅 ∈ V)
51 opex 5379 . . . 4 𝑀, 𝑁⟩ ∈ V
5251a1i 11 . . 3 (𝜑 → ⟨𝑀, 𝑁⟩ ∈ V)
53 ovex 7308 . . . . 5 (𝐵m (𝑀 × 𝑁)) ∈ V
54 ovex 7308 . . . . 5 (𝐵m 𝑁) ∈ V
5553, 54mpoex 7920 . . . 4 (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))) ∈ V
5655a1i 11 . . 3 (𝜑 → (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))) ∈ V)
573, 48, 50, 52, 56ovmpod 7425 . 2 (𝜑 → (𝑅 maVecMul ⟨𝑀, 𝑁⟩) = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))))
581, 57eqtrid 2790 1 (𝜑× = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦𝑗)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  csb 3832  cop 4567  cmpt 5157   × cxp 5587  cfv 6433  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830  m cmap 8615  Fincfn 8733  Basecbs 16912  .rcmulr 16963   Σg cgsu 17151   maVecMul cmvmul 21689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-mvmul 21690
This theorem is referenced by:  mvmulval  21692  mavmuldm  21699  mavmul0g  21702
  Copyright terms: Public domain W3C validator