MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodcnv Structured version   Visualization version   GIF version

Theorem fprodcnv 15621
Description: Transform a product region using the converse operation. (Contributed by Scott Fenton, 1-Feb-2018.)
Hypotheses
Ref Expression
fprodcnv.1 (𝑥 = ⟨𝑗, 𝑘⟩ → 𝐵 = 𝐷)
fprodcnv.2 (𝑦 = ⟨𝑘, 𝑗⟩ → 𝐶 = 𝐷)
fprodcnv.3 (𝜑𝐴 ∈ Fin)
fprodcnv.4 (𝜑 → Rel 𝐴)
fprodcnv.5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fprodcnv (𝜑 → ∏𝑥𝐴 𝐵 = ∏𝑦 𝐴𝐶)
Distinct variable groups:   𝑥,𝐴,𝑦   𝐵,𝑗,𝑘,𝑦   𝐶,𝑗,𝑘   𝑥,𝐷,𝑦   𝑗,𝑘,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐴(𝑗,𝑘)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑗,𝑘)

Proof of Theorem fprodcnv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3842 . . . 4 (𝑥 = ⟨(2nd𝑦), (1st𝑦)⟩ → 𝐵 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
2 fvex 6769 . . . . 5 (2nd𝑦) ∈ V
3 fvex 6769 . . . . 5 (1st𝑦) ∈ V
4 opex 5373 . . . . . . 7 𝑗, 𝑘⟩ ∈ V
5 fprodcnv.1 . . . . . . 7 (𝑥 = ⟨𝑗, 𝑘⟩ → 𝐵 = 𝐷)
64, 5csbie 3864 . . . . . 6 𝑗, 𝑘⟩ / 𝑥𝐵 = 𝐷
7 opeq12 4803 . . . . . . 7 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → ⟨𝑗, 𝑘⟩ = ⟨(2nd𝑦), (1st𝑦)⟩)
87csbeq1d 3832 . . . . . 6 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝑗, 𝑘⟩ / 𝑥𝐵 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
96, 8eqtr3id 2793 . . . . 5 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝐷 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
102, 3, 9csbie2 3870 . . . 4 (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵
111, 10eqtr4di 2797 . . 3 (𝑥 = ⟨(2nd𝑦), (1st𝑦)⟩ → 𝐵 = (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
12 fprodcnv.3 . . . 4 (𝜑𝐴 ∈ Fin)
13 cnvfi 8924 . . . 4 (𝐴 ∈ Fin → 𝐴 ∈ Fin)
1412, 13syl 17 . . 3 (𝜑𝐴 ∈ Fin)
15 relcnv 6001 . . . . 5 Rel 𝐴
16 cnvf1o 7922 . . . . 5 (Rel 𝐴 → (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴)
1715, 16ax-mp 5 . . . 4 (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴
18 fprodcnv.4 . . . . . 6 (𝜑 → Rel 𝐴)
19 dfrel2 6081 . . . . . 6 (Rel 𝐴𝐴 = 𝐴)
2018, 19sylib 217 . . . . 5 (𝜑𝐴 = 𝐴)
2120f1oeq3d 6697 . . . 4 (𝜑 → ((𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴 ↔ (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴))
2217, 21mpbii 232 . . 3 (𝜑 → (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴)
23 1st2nd 7853 . . . . . . 7 ((Rel 𝐴𝑦𝐴) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2415, 23mpan 686 . . . . . 6 (𝑦𝐴𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2524fveq2d 6760 . . . . 5 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘𝑦) = ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩))
2624eleq1d 2823 . . . . . . 7 (𝑦𝐴 → (𝑦𝐴 ↔ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴))
2726ibi 266 . . . . . 6 (𝑦𝐴 → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴)
28 sneq 4568 . . . . . . . . . 10 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
2928cnveqd 5773 . . . . . . . . 9 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
3029unieqd 4850 . . . . . . . 8 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
31 opswap 6121 . . . . . . . 8 {⟨(1st𝑦), (2nd𝑦)⟩} = ⟨(2nd𝑦), (1st𝑦)⟩
3230, 31eqtrdi 2795 . . . . . . 7 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = ⟨(2nd𝑦), (1st𝑦)⟩)
33 eqid 2738 . . . . . . 7 (𝑧𝐴 {𝑧}) = (𝑧𝐴 {𝑧})
34 opex 5373 . . . . . . 7 ⟨(2nd𝑦), (1st𝑦)⟩ ∈ V
3532, 33, 34fvmpt 6857 . . . . . 6 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴 → ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
3627, 35syl 17 . . . . 5 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
3725, 36eqtrd 2778 . . . 4 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘𝑦) = ⟨(2nd𝑦), (1st𝑦)⟩)
3837adantl 481 . . 3 ((𝜑𝑦𝐴) → ((𝑧𝐴 {𝑧})‘𝑦) = ⟨(2nd𝑦), (1st𝑦)⟩)
39 fprodcnv.5 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4011, 14, 22, 38, 39fprodf1o 15584 . 2 (𝜑 → ∏𝑥𝐴 𝐵 = ∏𝑦 𝐴(2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
41 csbeq1a 3842 . . . . 5 (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ → 𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
4224, 41syl 17 . . . 4 (𝑦𝐴𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
43 opex 5373 . . . . . . 7 𝑘, 𝑗⟩ ∈ V
44 fprodcnv.2 . . . . . . 7 (𝑦 = ⟨𝑘, 𝑗⟩ → 𝐶 = 𝐷)
4543, 44csbie 3864 . . . . . 6 𝑘, 𝑗⟩ / 𝑦𝐶 = 𝐷
46 opeq12 4803 . . . . . . . 8 ((𝑘 = (1st𝑦) ∧ 𝑗 = (2nd𝑦)) → ⟨𝑘, 𝑗⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
4746ancoms 458 . . . . . . 7 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → ⟨𝑘, 𝑗⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
4847csbeq1d 3832 . . . . . 6 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝑘, 𝑗⟩ / 𝑦𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
4945, 48eqtr3id 2793 . . . . 5 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝐷 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
502, 3, 49csbie2 3870 . . . 4 (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶
5142, 50eqtr4di 2797 . . 3 (𝑦𝐴𝐶 = (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
5251prodeq2i 15557 . 2 𝑦 𝐴𝐶 = ∏𝑦 𝐴(2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷
5340, 52eqtr4di 2797 1 (𝜑 → ∏𝑥𝐴 𝐵 = ∏𝑦 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  csb 3828  {csn 4558  cop 4564   cuni 4836  cmpt 5153  ccnv 5579  Rel wrel 5585  1-1-ontowf1o 6417  cfv 6418  1st c1st 7802  2nd c2nd 7803  Fincfn 8691  cc 10800  cprod 15543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-prod 15544
This theorem is referenced by:  fprodcom2  15622
  Copyright terms: Public domain W3C validator