MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodcnv Structured version   Visualization version   GIF version

Theorem fprodcnv 15329
Description: Transform a product region using the converse operation. (Contributed by Scott Fenton, 1-Feb-2018.)
Hypotheses
Ref Expression
fprodcnv.1 (𝑥 = ⟨𝑗, 𝑘⟩ → 𝐵 = 𝐷)
fprodcnv.2 (𝑦 = ⟨𝑘, 𝑗⟩ → 𝐶 = 𝐷)
fprodcnv.3 (𝜑𝐴 ∈ Fin)
fprodcnv.4 (𝜑 → Rel 𝐴)
fprodcnv.5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fprodcnv (𝜑 → ∏𝑥𝐴 𝐵 = ∏𝑦 𝐴𝐶)
Distinct variable groups:   𝑥,𝐴,𝑦   𝐵,𝑗,𝑘,𝑦   𝐶,𝑗,𝑘   𝑥,𝐷,𝑦   𝑗,𝑘,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐴(𝑗,𝑘)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑗,𝑘)

Proof of Theorem fprodcnv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3842 . . . 4 (𝑥 = ⟨(2nd𝑦), (1st𝑦)⟩ → 𝐵 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
2 fvex 6658 . . . . 5 (2nd𝑦) ∈ V
3 fvex 6658 . . . . 5 (1st𝑦) ∈ V
4 opex 5321 . . . . . . 7 𝑗, 𝑘⟩ ∈ V
5 fprodcnv.1 . . . . . . 7 (𝑥 = ⟨𝑗, 𝑘⟩ → 𝐵 = 𝐷)
64, 5csbie 3863 . . . . . 6 𝑗, 𝑘⟩ / 𝑥𝐵 = 𝐷
7 opeq12 4767 . . . . . . 7 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → ⟨𝑗, 𝑘⟩ = ⟨(2nd𝑦), (1st𝑦)⟩)
87csbeq1d 3832 . . . . . 6 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝑗, 𝑘⟩ / 𝑥𝐵 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
96, 8syl5eqr 2847 . . . . 5 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝐷 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
102, 3, 9csbie2 3867 . . . 4 (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵
111, 10eqtr4di 2851 . . 3 (𝑥 = ⟨(2nd𝑦), (1st𝑦)⟩ → 𝐵 = (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
12 fprodcnv.3 . . . 4 (𝜑𝐴 ∈ Fin)
13 cnvfi 8790 . . . 4 (𝐴 ∈ Fin → 𝐴 ∈ Fin)
1412, 13syl 17 . . 3 (𝜑𝐴 ∈ Fin)
15 relcnv 5934 . . . . 5 Rel 𝐴
16 cnvf1o 7789 . . . . 5 (Rel 𝐴 → (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴)
1715, 16ax-mp 5 . . . 4 (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴
18 fprodcnv.4 . . . . . 6 (𝜑 → Rel 𝐴)
19 dfrel2 6013 . . . . . 6 (Rel 𝐴𝐴 = 𝐴)
2018, 19sylib 221 . . . . 5 (𝜑𝐴 = 𝐴)
2120f1oeq3d 6587 . . . 4 (𝜑 → ((𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴 ↔ (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴))
2217, 21mpbii 236 . . 3 (𝜑 → (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴)
23 1st2nd 7720 . . . . . . 7 ((Rel 𝐴𝑦𝐴) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2415, 23mpan 689 . . . . . 6 (𝑦𝐴𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2524fveq2d 6649 . . . . 5 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘𝑦) = ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩))
2624eleq1d 2874 . . . . . . 7 (𝑦𝐴 → (𝑦𝐴 ↔ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴))
2726ibi 270 . . . . . 6 (𝑦𝐴 → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴)
28 sneq 4535 . . . . . . . . . 10 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
2928cnveqd 5710 . . . . . . . . 9 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
3029unieqd 4814 . . . . . . . 8 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
31 opswap 6053 . . . . . . . 8 {⟨(1st𝑦), (2nd𝑦)⟩} = ⟨(2nd𝑦), (1st𝑦)⟩
3230, 31eqtrdi 2849 . . . . . . 7 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = ⟨(2nd𝑦), (1st𝑦)⟩)
33 eqid 2798 . . . . . . 7 (𝑧𝐴 {𝑧}) = (𝑧𝐴 {𝑧})
34 opex 5321 . . . . . . 7 ⟨(2nd𝑦), (1st𝑦)⟩ ∈ V
3532, 33, 34fvmpt 6745 . . . . . 6 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴 → ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
3627, 35syl 17 . . . . 5 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
3725, 36eqtrd 2833 . . . 4 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘𝑦) = ⟨(2nd𝑦), (1st𝑦)⟩)
3837adantl 485 . . 3 ((𝜑𝑦𝐴) → ((𝑧𝐴 {𝑧})‘𝑦) = ⟨(2nd𝑦), (1st𝑦)⟩)
39 fprodcnv.5 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4011, 14, 22, 38, 39fprodf1o 15292 . 2 (𝜑 → ∏𝑥𝐴 𝐵 = ∏𝑦 𝐴(2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
41 csbeq1a 3842 . . . . 5 (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ → 𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
4224, 41syl 17 . . . 4 (𝑦𝐴𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
43 opex 5321 . . . . . . 7 𝑘, 𝑗⟩ ∈ V
44 fprodcnv.2 . . . . . . 7 (𝑦 = ⟨𝑘, 𝑗⟩ → 𝐶 = 𝐷)
4543, 44csbie 3863 . . . . . 6 𝑘, 𝑗⟩ / 𝑦𝐶 = 𝐷
46 opeq12 4767 . . . . . . . 8 ((𝑘 = (1st𝑦) ∧ 𝑗 = (2nd𝑦)) → ⟨𝑘, 𝑗⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
4746ancoms 462 . . . . . . 7 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → ⟨𝑘, 𝑗⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
4847csbeq1d 3832 . . . . . 6 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝑘, 𝑗⟩ / 𝑦𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
4945, 48syl5eqr 2847 . . . . 5 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝐷 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
502, 3, 49csbie2 3867 . . . 4 (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶
5142, 50eqtr4di 2851 . . 3 (𝑦𝐴𝐶 = (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
5251prodeq2i 15265 . 2 𝑦 𝐴𝐶 = ∏𝑦 𝐴(2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷
5340, 52eqtr4di 2851 1 (𝜑 → ∏𝑥𝐴 𝐵 = ∏𝑦 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  csb 3828  {csn 4525  cop 4531   cuni 4800  cmpt 5110  ccnv 5518  Rel wrel 5524  1-1-ontowf1o 6323  cfv 6324  1st c1st 7669  2nd c2nd 7670  Fincfn 8492  cc 10524  cprod 15251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-prod 15252
This theorem is referenced by:  fprodcom2  15330
  Copyright terms: Public domain W3C validator