Step | Hyp | Ref
| Expression |
1 | | df-rnghomo 45445 |
. . 3
⊢ RngHomo
= (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) |
2 | 1 | a1i 11 |
. 2
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → RngHomo =
(𝑟 ∈ Rng, 𝑠 ∈ Rng ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))})) |
3 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
4 | | isrnghm.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑅) |
5 | 3, 4 | eqtr4di 2796 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
6 | 5 | csbeq1d 3836 |
. . . . 5
⊢ (𝑟 = 𝑅 → ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} = ⦋𝐵 / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) |
7 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆)) |
8 | | rnghmval.c |
. . . . . . . 8
⊢ 𝐶 = (Base‘𝑆) |
9 | 7, 8 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = 𝐶) |
10 | 9 | csbeq1d 3836 |
. . . . . 6
⊢ (𝑠 = 𝑆 → ⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} = ⦋𝐶 / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) |
11 | 10 | csbeq2dv 3839 |
. . . . 5
⊢ (𝑠 = 𝑆 → ⦋𝐵 / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} = ⦋𝐵 / 𝑣⦌⦋𝐶 / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) |
12 | 6, 11 | sylan9eq 2798 |
. . . 4
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} = ⦋𝐵 / 𝑣⦌⦋𝐶 / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) |
13 | 12 | adantl 482 |
. . 3
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} = ⦋𝐵 / 𝑣⦌⦋𝐶 / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) |
14 | 4 | fvexi 6788 |
. . . . . 6
⊢ 𝐵 ∈ V |
15 | 8 | fvexi 6788 |
. . . . . 6
⊢ 𝐶 ∈ V |
16 | | oveq12 7284 |
. . . . . . . 8
⊢ ((𝑤 = 𝐶 ∧ 𝑣 = 𝐵) → (𝑤 ↑m 𝑣) = (𝐶 ↑m 𝐵)) |
17 | 16 | ancoms 459 |
. . . . . . 7
⊢ ((𝑣 = 𝐵 ∧ 𝑤 = 𝐶) → (𝑤 ↑m 𝑣) = (𝐶 ↑m 𝐵)) |
18 | | raleq 3342 |
. . . . . . . . 9
⊢ (𝑣 = 𝐵 → (∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))) |
19 | 18 | raleqbi1dv 3340 |
. . . . . . . 8
⊢ (𝑣 = 𝐵 → (∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))) |
20 | 19 | adantr 481 |
. . . . . . 7
⊢ ((𝑣 = 𝐵 ∧ 𝑤 = 𝐶) → (∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))) |
21 | 17, 20 | rabeqbidv 3420 |
. . . . . 6
⊢ ((𝑣 = 𝐵 ∧ 𝑤 = 𝐶) → {𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} = {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) |
22 | 14, 15, 21 | csbie2 3874 |
. . . . 5
⊢
⦋𝐵 /
𝑣⦌⦋𝐶 / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} = {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} |
23 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (+g‘𝑟) = (+g‘𝑅)) |
24 | | rnghmval.p |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝑅) |
25 | 23, 24 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (+g‘𝑟) = + ) |
26 | 25 | oveqdr 7303 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑥(+g‘𝑟)𝑦) = (𝑥 + 𝑦)) |
27 | 26 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑓‘(𝑥(+g‘𝑟)𝑦)) = (𝑓‘(𝑥 + 𝑦))) |
28 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑆 → (+g‘𝑠) = (+g‘𝑆)) |
29 | | rnghmval.a |
. . . . . . . . . . . 12
⊢ ✚ =
(+g‘𝑆) |
30 | 28, 29 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑆 → (+g‘𝑠) = ✚ ) |
31 | 30 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (+g‘𝑠) = ✚ ) |
32 | 31 | oveqd 7292 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) = ((𝑓‘𝑥) ✚ (𝑓‘𝑦))) |
33 | 27, 32 | eqeq12d 2754 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ↔ (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ✚ (𝑓‘𝑦)))) |
34 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) |
35 | | isrnghm.t |
. . . . . . . . . . . 12
⊢ · =
(.r‘𝑅) |
36 | 34, 35 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) |
37 | 36 | oveqdr 7303 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑥(.r‘𝑟)𝑦) = (𝑥 · 𝑦)) |
38 | 37 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑓‘(𝑥(.r‘𝑟)𝑦)) = (𝑓‘(𝑥 · 𝑦))) |
39 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑆 → (.r‘𝑠) = (.r‘𝑆)) |
40 | | isrnghm.m |
. . . . . . . . . . . 12
⊢ ∗ =
(.r‘𝑆) |
41 | 39, 40 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑆 → (.r‘𝑠) = ∗ ) |
42 | 41 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (.r‘𝑠) = ∗ ) |
43 | 42 | oveqd 7292 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦))) |
44 | 38, 43 | eqeq12d 2754 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ↔ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦)))) |
45 | 33, 44 | anbi12d 631 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ ((𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ✚ (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦))))) |
46 | 45 | 2ralbidv 3129 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ✚ (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦))))) |
47 | 46 | rabbidv 3414 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} = {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ✚ (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦)))}) |
48 | 22, 47 | eqtrid 2790 |
. . . 4
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ⦋𝐵 / 𝑣⦌⦋𝐶 / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} = {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ✚ (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦)))}) |
49 | 48 | adantl 482 |
. . 3
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → ⦋𝐵 / 𝑣⦌⦋𝐶 / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} = {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ✚ (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦)))}) |
50 | 13, 49 | eqtrd 2778 |
. 2
⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))} = {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ✚ (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦)))}) |
51 | | simpl 483 |
. 2
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → 𝑅 ∈ Rng) |
52 | | simpr 485 |
. 2
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → 𝑆 ∈ Rng) |
53 | | ovex 7308 |
. . . 4
⊢ (𝐶 ↑m 𝐵) ∈ V |
54 | 53 | rabex 5256 |
. . 3
⊢ {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ✚ (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦)))} ∈ V |
55 | 54 | a1i 11 |
. 2
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ✚ (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦)))} ∈ V) |
56 | 2, 50, 51, 52, 55 | ovmpod 7425 |
1
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑅 RngHomo 𝑆) = {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ✚ (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦)))}) |