MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbsng Structured version   Visualization version   GIF version

Theorem csbsng 4475
Description: Distribute proper substitution through the singleton of a class. csbsng 4475 is derived from the virtual deduction proof csbsngVD 40062. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbsng (𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})

Proof of Theorem csbsng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbab 4234 . . 3 𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦[𝐴 / 𝑥]𝑦 = 𝐵}
2 sbceq2g 4215 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵))
32abbidv 2906 . . 3 (𝐴𝑉 → {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵})
41, 3syl5eq 2826 . 2 (𝐴𝑉𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵})
5 df-sn 4399 . . 3 {𝐵} = {𝑦𝑦 = 𝐵}
65csbeq2i 4218 . 2 𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}
7 df-sn 4399 . 2 {𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}
84, 6, 73eqtr4g 2839 1 (𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  {cab 2763  [wsbc 3652  csb 3751  {csn 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-nul 4142  df-sn 4399
This theorem is referenced by:  csbprg  4476  csbopg  4654  csbpredg  33768  csbfv12gALTVD  40068
  Copyright terms: Public domain W3C validator