| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbsng | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through the singleton of a class. csbsng 4688 is derived from the virtual deduction proof csbsngVD 44846. (Contributed by Alan Sare, 10-Nov-2012.) |
| Ref | Expression |
|---|---|
| csbsng | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋𝐴 / 𝑥⦌𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbab 4420 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 = 𝐵} | |
| 2 | sbceq2g 4399 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑦 = 𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵)) | |
| 3 | 2 | abbidv 2800 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵}) |
| 4 | 1, 3 | eqtrid 2781 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵}) |
| 5 | df-sn 4607 | . . 3 ⊢ {𝐵} = {𝑦 ∣ 𝑦 = 𝐵} | |
| 6 | 5 | csbeq2i 3887 | . 2 ⊢ ⦋𝐴 / 𝑥⦌{𝐵} = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} |
| 7 | df-sn 4607 | . 2 ⊢ {⦋𝐴 / 𝑥⦌𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} | |
| 8 | 4, 6, 7 | 3eqtr4g 2794 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋𝐴 / 𝑥⦌𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {cab 2712 [wsbc 3770 ⦋csb 3879 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-nul 4314 df-sn 4607 |
| This theorem is referenced by: csbprg 4689 csbopg 4871 csbpredg 6307 csbfv12gALTVD 44852 |
| Copyright terms: Public domain | W3C validator |