Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbsng | Structured version Visualization version GIF version |
Description: Distribute proper substitution through the singleton of a class. csbsng 4601 is derived from the virtual deduction proof csbsngVD 41972. (Contributed by Alan Sare, 10-Nov-2012.) |
Ref | Expression |
---|---|
csbsng | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋𝐴 / 𝑥⦌𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbab 4334 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 = 𝐵} | |
2 | sbceq2g 4313 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑦 = 𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵)) | |
3 | 2 | abbidv 2822 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵}) |
4 | 1, 3 | syl5eq 2805 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵}) |
5 | df-sn 4523 | . . 3 ⊢ {𝐵} = {𝑦 ∣ 𝑦 = 𝐵} | |
6 | 5 | csbeq2i 3813 | . 2 ⊢ ⦋𝐴 / 𝑥⦌{𝐵} = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} |
7 | df-sn 4523 | . 2 ⊢ {⦋𝐴 / 𝑥⦌𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} | |
8 | 4, 6, 7 | 3eqtr4g 2818 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋𝐴 / 𝑥⦌𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 {cab 2735 [wsbc 3696 ⦋csb 3805 {csn 4522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-nul 4226 df-sn 4523 |
This theorem is referenced by: csbprg 4602 csbopg 4781 csbpredg 35023 csbfv12gALTVD 41978 |
Copyright terms: Public domain | W3C validator |