MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbsng Structured version   Visualization version   GIF version

Theorem csbsng 4713
Description: Distribute proper substitution through the singleton of a class. csbsng 4713 is derived from the virtual deduction proof csbsngVD 44397. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbsng (𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})

Proof of Theorem csbsng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbab 4438 . . 3 𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦[𝐴 / 𝑥]𝑦 = 𝐵}
2 sbceq2g 4417 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵))
32abbidv 2794 . . 3 (𝐴𝑉 → {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵})
41, 3eqtrid 2777 . 2 (𝐴𝑉𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵})
5 df-sn 4630 . . 3 {𝐵} = {𝑦𝑦 = 𝐵}
65csbeq2i 3898 . 2 𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}
7 df-sn 4630 . 2 {𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}
84, 6, 73eqtr4g 2790 1 (𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {cab 2702  [wsbc 3774  csb 3890  {csn 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-nul 4324  df-sn 4630
This theorem is referenced by:  csbprg  4714  csbopg  4892  csbpredg  6311  csbfv12gALTVD  44403
  Copyright terms: Public domain W3C validator