MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbun Structured version   Visualization version   GIF version

Theorem csbun 4384
Description: Distribution of class substitution over union of two classes. (Contributed by Drahflow, 23-Sep-2015.) (Revised by Mario Carneiro, 11-Dec-2016.) (Revised by NM, 13-Sep-2018.)
Assertion
Ref Expression
csbun 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)

Proof of Theorem csbun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3845 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵𝐶))
2 csbeq1 3845 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
3 csbeq1 3845 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
42, 3uneq12d 4110 . . . 4 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
51, 4eqeq12d 2752 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶) ↔ 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)))
6 vex 3445 . . . 4 𝑦 ∈ V
7 nfcsb1v 3867 . . . . 5 𝑥𝑦 / 𝑥𝐵
8 nfcsb1v 3867 . . . . 5 𝑥𝑦 / 𝑥𝐶
97, 8nfun 4111 . . . 4 𝑥(𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
10 csbeq1a 3856 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
11 csbeq1a 3856 . . . . 5 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1210, 11uneq12d 4110 . . . 4 (𝑥 = 𝑦 → (𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶))
136, 9, 12csbief 3877 . . 3 𝑦 / 𝑥(𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
145, 13vtoclg 3514 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
15 un0 4336 . . . 4 (∅ ∪ ∅) = ∅
1615a1i 11 . . 3 𝐴 ∈ V → (∅ ∪ ∅) = ∅)
17 csbprc 4352 . . . 4 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
18 csbprc 4352 . . . 4 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
1917, 18uneq12d 4110 . . 3 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (∅ ∪ ∅))
20 csbprc 4352 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐶) = ∅)
2116, 19, 203eqtr4rd 2787 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
2214, 21pm2.61i 182 1 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2105  Vcvv 3441  csb 3842  cun 3895  c0 4268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-nul 4269
This theorem is referenced by:  csbprg  4656
  Copyright terms: Public domain W3C validator