MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbopg Structured version   Visualization version   GIF version

Theorem csbopg 4890
Description: Distribution of class substitution over ordered pairs. (Contributed by Drahflow, 25-Sep-2015.) (Revised by Mario Carneiro, 29-Oct-2015.) (Revised by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbopg (𝐴𝑉𝐴 / 𝑥𝐶, 𝐷⟩ = ⟨𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟩)

Proof of Theorem csbopg
StepHypRef Expression
1 csbif 4584 . . 3 𝐴 / 𝑥if((𝐶 ∈ V ∧ 𝐷 ∈ V), {{𝐶}, {𝐶, 𝐷}}, ∅) = if([𝐴 / 𝑥](𝐶 ∈ V ∧ 𝐷 ∈ V), 𝐴 / 𝑥{{𝐶}, {𝐶, 𝐷}}, 𝐴 / 𝑥∅)
2 sbcan 3828 . . . . 5 ([𝐴 / 𝑥](𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ ([𝐴 / 𝑥]𝐶 ∈ V ∧ [𝐴 / 𝑥]𝐷 ∈ V))
3 sbcel1g 4412 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝐶 ∈ V ↔ 𝐴 / 𝑥𝐶 ∈ V))
4 sbcel1g 4412 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝐷 ∈ V ↔ 𝐴 / 𝑥𝐷 ∈ V))
53, 4anbi12d 629 . . . . 5 (𝐴𝑉 → (([𝐴 / 𝑥]𝐶 ∈ V ∧ [𝐴 / 𝑥]𝐷 ∈ V) ↔ (𝐴 / 𝑥𝐶 ∈ V ∧ 𝐴 / 𝑥𝐷 ∈ V)))
62, 5bitrid 282 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥](𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (𝐴 / 𝑥𝐶 ∈ V ∧ 𝐴 / 𝑥𝐷 ∈ V)))
7 csbprg 4712 . . . . 5 (𝐴𝑉𝐴 / 𝑥{{𝐶}, {𝐶, 𝐷}} = {𝐴 / 𝑥{𝐶}, 𝐴 / 𝑥{𝐶, 𝐷}})
8 csbsng 4711 . . . . . 6 (𝐴𝑉𝐴 / 𝑥{𝐶} = {𝐴 / 𝑥𝐶})
9 csbprg 4712 . . . . . 6 (𝐴𝑉𝐴 / 𝑥{𝐶, 𝐷} = {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷})
108, 9preq12d 4744 . . . . 5 (𝐴𝑉 → {𝐴 / 𝑥{𝐶}, 𝐴 / 𝑥{𝐶, 𝐷}} = {{𝐴 / 𝑥𝐶}, {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷}})
117, 10eqtrd 2770 . . . 4 (𝐴𝑉𝐴 / 𝑥{{𝐶}, {𝐶, 𝐷}} = {{𝐴 / 𝑥𝐶}, {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷}})
12 csbconstg 3911 . . . 4 (𝐴𝑉𝐴 / 𝑥∅ = ∅)
136, 11, 12ifbieq12d 4555 . . 3 (𝐴𝑉 → if([𝐴 / 𝑥](𝐶 ∈ V ∧ 𝐷 ∈ V), 𝐴 / 𝑥{{𝐶}, {𝐶, 𝐷}}, 𝐴 / 𝑥∅) = if((𝐴 / 𝑥𝐶 ∈ V ∧ 𝐴 / 𝑥𝐷 ∈ V), {{𝐴 / 𝑥𝐶}, {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷}}, ∅))
141, 13eqtrid 2782 . 2 (𝐴𝑉𝐴 / 𝑥if((𝐶 ∈ V ∧ 𝐷 ∈ V), {{𝐶}, {𝐶, 𝐷}}, ∅) = if((𝐴 / 𝑥𝐶 ∈ V ∧ 𝐴 / 𝑥𝐷 ∈ V), {{𝐴 / 𝑥𝐶}, {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷}}, ∅))
15 dfopif 4869 . . 3 𝐶, 𝐷⟩ = if((𝐶 ∈ V ∧ 𝐷 ∈ V), {{𝐶}, {𝐶, 𝐷}}, ∅)
1615csbeq2i 3900 . 2 𝐴 / 𝑥𝐶, 𝐷⟩ = 𝐴 / 𝑥if((𝐶 ∈ V ∧ 𝐷 ∈ V), {{𝐶}, {𝐶, 𝐷}}, ∅)
17 dfopif 4869 . 2 𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟩ = if((𝐴 / 𝑥𝐶 ∈ V ∧ 𝐴 / 𝑥𝐷 ∈ V), {{𝐴 / 𝑥𝐶}, {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷}}, ∅)
1814, 16, 173eqtr4g 2795 1 (𝐴𝑉𝐴 / 𝑥𝐶, 𝐷⟩ = ⟨𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  Vcvv 3472  [wsbc 3776  csb 3892  c0 4321  ifcif 4527  {csn 4627  {cpr 4629  cop 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634
This theorem is referenced by:  sbcop  5488  opsbc2ie  31983  esum2dlem  33388  csbfinxpg  36572
  Copyright terms: Public domain W3C validator