MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbopg Structured version   Visualization version   GIF version

Theorem csbopg 4887
Description: Distribution of class substitution over ordered pairs. (Contributed by Drahflow, 25-Sep-2015.) (Revised by Mario Carneiro, 29-Oct-2015.) (Revised by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbopg (𝐴𝑉𝐴 / 𝑥𝐶, 𝐷⟩ = ⟨𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟩)

Proof of Theorem csbopg
StepHypRef Expression
1 csbif 4581 . . 3 𝐴 / 𝑥if((𝐶 ∈ V ∧ 𝐷 ∈ V), {{𝐶}, {𝐶, 𝐷}}, ∅) = if([𝐴 / 𝑥](𝐶 ∈ V ∧ 𝐷 ∈ V), 𝐴 / 𝑥{{𝐶}, {𝐶, 𝐷}}, 𝐴 / 𝑥∅)
2 sbcan 3827 . . . . 5 ([𝐴 / 𝑥](𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ ([𝐴 / 𝑥]𝐶 ∈ V ∧ [𝐴 / 𝑥]𝐷 ∈ V))
3 sbcel1g 4411 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝐶 ∈ V ↔ 𝐴 / 𝑥𝐶 ∈ V))
4 sbcel1g 4411 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝐷 ∈ V ↔ 𝐴 / 𝑥𝐷 ∈ V))
53, 4anbi12d 632 . . . . 5 (𝐴𝑉 → (([𝐴 / 𝑥]𝐶 ∈ V ∧ [𝐴 / 𝑥]𝐷 ∈ V) ↔ (𝐴 / 𝑥𝐶 ∈ V ∧ 𝐴 / 𝑥𝐷 ∈ V)))
62, 5bitrid 283 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥](𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (𝐴 / 𝑥𝐶 ∈ V ∧ 𝐴 / 𝑥𝐷 ∈ V)))
7 csbprg 4709 . . . . 5 (𝐴𝑉𝐴 / 𝑥{{𝐶}, {𝐶, 𝐷}} = {𝐴 / 𝑥{𝐶}, 𝐴 / 𝑥{𝐶, 𝐷}})
8 csbsng 4708 . . . . . 6 (𝐴𝑉𝐴 / 𝑥{𝐶} = {𝐴 / 𝑥𝐶})
9 csbprg 4709 . . . . . 6 (𝐴𝑉𝐴 / 𝑥{𝐶, 𝐷} = {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷})
108, 9preq12d 4741 . . . . 5 (𝐴𝑉 → {𝐴 / 𝑥{𝐶}, 𝐴 / 𝑥{𝐶, 𝐷}} = {{𝐴 / 𝑥𝐶}, {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷}})
117, 10eqtrd 2773 . . . 4 (𝐴𝑉𝐴 / 𝑥{{𝐶}, {𝐶, 𝐷}} = {{𝐴 / 𝑥𝐶}, {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷}})
12 csbconstg 3910 . . . 4 (𝐴𝑉𝐴 / 𝑥∅ = ∅)
136, 11, 12ifbieq12d 4552 . . 3 (𝐴𝑉 → if([𝐴 / 𝑥](𝐶 ∈ V ∧ 𝐷 ∈ V), 𝐴 / 𝑥{{𝐶}, {𝐶, 𝐷}}, 𝐴 / 𝑥∅) = if((𝐴 / 𝑥𝐶 ∈ V ∧ 𝐴 / 𝑥𝐷 ∈ V), {{𝐴 / 𝑥𝐶}, {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷}}, ∅))
141, 13eqtrid 2785 . 2 (𝐴𝑉𝐴 / 𝑥if((𝐶 ∈ V ∧ 𝐷 ∈ V), {{𝐶}, {𝐶, 𝐷}}, ∅) = if((𝐴 / 𝑥𝐶 ∈ V ∧ 𝐴 / 𝑥𝐷 ∈ V), {{𝐴 / 𝑥𝐶}, {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷}}, ∅))
15 dfopif 4866 . . 3 𝐶, 𝐷⟩ = if((𝐶 ∈ V ∧ 𝐷 ∈ V), {{𝐶}, {𝐶, 𝐷}}, ∅)
1615csbeq2i 3899 . 2 𝐴 / 𝑥𝐶, 𝐷⟩ = 𝐴 / 𝑥if((𝐶 ∈ V ∧ 𝐷 ∈ V), {{𝐶}, {𝐶, 𝐷}}, ∅)
17 dfopif 4866 . 2 𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟩ = if((𝐴 / 𝑥𝐶 ∈ V ∧ 𝐴 / 𝑥𝐷 ∈ V), {{𝐴 / 𝑥𝐶}, {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷}}, ∅)
1814, 16, 173eqtr4g 2798 1 (𝐴𝑉𝐴 / 𝑥𝐶, 𝐷⟩ = ⟨𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  [wsbc 3775  csb 3891  c0 4320  ifcif 4524  {csn 4624  {cpr 4626  cop 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631
This theorem is referenced by:  sbcop  5485  opsbc2ie  31681  esum2dlem  33021  csbfinxpg  36174
  Copyright terms: Public domain W3C validator