Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orddif0suc Structured version   Visualization version   GIF version

Theorem orddif0suc 43264
Description: For any distinct pair of ordinals, if the set difference between the greater and the successor of the lesser is empty, the greater is the successor of the lesser. Lemma 1.16 of [Schloeder] p. 2. (Contributed by RP, 17-Jan-2025.)
Assertion
Ref Expression
orddif0suc ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ → 𝐵 = suc 𝐴))

Proof of Theorem orddif0suc
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐵)
2 ordelon 6359 . . . . . . . . 9 ((Ord 𝐵𝐴𝐵) → 𝐴 ∈ On)
32ancoms 458 . . . . . . . 8 ((𝐴𝐵 ∧ Ord 𝐵) → 𝐴 ∈ On)
4 ordeldifsucon 43255 . . . . . . . 8 ((Ord 𝐵𝐴 ∈ On) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐𝐵𝐴𝑐)))
51, 3, 4syl2anc 584 . . . . . . 7 ((𝐴𝐵 ∧ Ord 𝐵) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐𝐵𝐴𝑐)))
65biancomd 463 . . . . . 6 ((𝐴𝐵 ∧ Ord 𝐵) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝐴𝑐𝑐𝐵)))
7 ordelon 6359 . . . . . . . . . 10 ((Ord 𝐵𝑐𝐵) → 𝑐 ∈ On)
87ad2ant2l 746 . . . . . . . . 9 (((𝐴𝐵 ∧ Ord 𝐵) ∧ (𝐴𝑐𝑐𝐵)) → 𝑐 ∈ On)
98ex 412 . . . . . . . 8 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐴𝑐𝑐𝐵) → 𝑐 ∈ On))
109pm4.71rd 562 . . . . . . 7 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐴𝑐𝑐𝐵) ↔ (𝑐 ∈ On ∧ (𝐴𝑐𝑐𝐵))))
11 df-an 396 . . . . . . 7 ((𝑐 ∈ On ∧ (𝐴𝑐𝑐𝐵)) ↔ ¬ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵)))
1210, 11bitrdi 287 . . . . . 6 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐴𝑐𝑐𝐵) ↔ ¬ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵))))
136, 12bitr2d 280 . . . . 5 ((𝐴𝐵 ∧ Ord 𝐵) → (¬ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵)) ↔ 𝑐 ∈ (𝐵 ∖ suc 𝐴)))
1413con1bid 355 . . . 4 ((𝐴𝐵 ∧ Ord 𝐵) → (¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵))))
1514albidv 1920 . . 3 ((𝐴𝐵 ∧ Ord 𝐵) → (∀𝑐 ¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ ∀𝑐(𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵))))
16 eq0 4316 . . 3 ((𝐵 ∖ suc 𝐴) = ∅ ↔ ∀𝑐 ¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴))
17 df-ral 3046 . . 3 (∀𝑐 ∈ On ¬ (𝐴𝑐𝑐𝐵) ↔ ∀𝑐(𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵)))
1815, 16, 173bitr4g 314 . 2 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ ↔ ∀𝑐 ∈ On ¬ (𝐴𝑐𝑐𝐵)))
19 ordnexbtwnsuc 43263 . 2 ((𝐴𝐵 ∧ Ord 𝐵) → (∀𝑐 ∈ On ¬ (𝐴𝑐𝑐𝐵) → 𝐵 = suc 𝐴))
2018, 19sylbid 240 1 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ → 𝐵 = suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3045  cdif 3914  c0 4299  Ord word 6334  Oncon0 6335  suc csuc 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-suc 6341
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator