Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orddif0suc Structured version   Visualization version   GIF version

Theorem orddif0suc 43230
Description: For any distinct pair of ordinals, if the set difference between the greater and the successor of the lesser is empty, the greater is the successor of the lesser. Lemma 1.16 of [Schloeder] p. 2. (Contributed by RP, 17-Jan-2025.)
Assertion
Ref Expression
orddif0suc ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ → 𝐵 = suc 𝐴))

Proof of Theorem orddif0suc
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐵)
2 ordelon 6419 . . . . . . . . 9 ((Ord 𝐵𝐴𝐵) → 𝐴 ∈ On)
32ancoms 458 . . . . . . . 8 ((𝐴𝐵 ∧ Ord 𝐵) → 𝐴 ∈ On)
4 ordeldifsucon 43221 . . . . . . . 8 ((Ord 𝐵𝐴 ∈ On) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐𝐵𝐴𝑐)))
51, 3, 4syl2anc 583 . . . . . . 7 ((𝐴𝐵 ∧ Ord 𝐵) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐𝐵𝐴𝑐)))
65biancomd 463 . . . . . 6 ((𝐴𝐵 ∧ Ord 𝐵) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝐴𝑐𝑐𝐵)))
7 ordelon 6419 . . . . . . . . . 10 ((Ord 𝐵𝑐𝐵) → 𝑐 ∈ On)
87ad2ant2l 745 . . . . . . . . 9 (((𝐴𝐵 ∧ Ord 𝐵) ∧ (𝐴𝑐𝑐𝐵)) → 𝑐 ∈ On)
98ex 412 . . . . . . . 8 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐴𝑐𝑐𝐵) → 𝑐 ∈ On))
109pm4.71rd 562 . . . . . . 7 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐴𝑐𝑐𝐵) ↔ (𝑐 ∈ On ∧ (𝐴𝑐𝑐𝐵))))
11 df-an 396 . . . . . . 7 ((𝑐 ∈ On ∧ (𝐴𝑐𝑐𝐵)) ↔ ¬ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵)))
1210, 11bitrdi 287 . . . . . 6 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐴𝑐𝑐𝐵) ↔ ¬ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵))))
136, 12bitr2d 280 . . . . 5 ((𝐴𝐵 ∧ Ord 𝐵) → (¬ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵)) ↔ 𝑐 ∈ (𝐵 ∖ suc 𝐴)))
1413con1bid 355 . . . 4 ((𝐴𝐵 ∧ Ord 𝐵) → (¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵))))
1514albidv 1919 . . 3 ((𝐴𝐵 ∧ Ord 𝐵) → (∀𝑐 ¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ ∀𝑐(𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵))))
16 eq0 4373 . . 3 ((𝐵 ∖ suc 𝐴) = ∅ ↔ ∀𝑐 ¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴))
17 df-ral 3068 . . 3 (∀𝑐 ∈ On ¬ (𝐴𝑐𝑐𝐵) ↔ ∀𝑐(𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵)))
1815, 16, 173bitr4g 314 . 2 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ ↔ ∀𝑐 ∈ On ¬ (𝐴𝑐𝑐𝐵)))
19 ordnexbtwnsuc 43229 . 2 ((𝐴𝐵 ∧ Ord 𝐵) → (∀𝑐 ∈ On ¬ (𝐴𝑐𝑐𝐵) → 𝐵 = suc 𝐴))
2018, 19sylbid 240 1 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ → 𝐵 = suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2108  wral 3067  cdif 3973  c0 4352  Ord word 6394  Oncon0 6395  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator