| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐵 ∧ Ord 𝐵) → Ord 𝐵) |
| 2 | | ordelon 6376 |
. . . . . . . . 9
⊢ ((Ord
𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ On) |
| 3 | 2 | ancoms 458 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐵 ∧ Ord 𝐵) → 𝐴 ∈ On) |
| 4 | | ordeldifsucon 43283 |
. . . . . . . 8
⊢ ((Ord
𝐵 ∧ 𝐴 ∈ On) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐 ∈ 𝐵 ∧ 𝐴 ∈ 𝑐))) |
| 5 | 1, 3, 4 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐵 ∧ Ord 𝐵) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐 ∈ 𝐵 ∧ 𝐴 ∈ 𝑐))) |
| 6 | 5 | biancomd 463 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐵 ∧ Ord 𝐵) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵))) |
| 7 | | ordelon 6376 |
. . . . . . . . . 10
⊢ ((Ord
𝐵 ∧ 𝑐 ∈ 𝐵) → 𝑐 ∈ On) |
| 8 | 7 | ad2ant2l 746 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐵 ∧ Ord 𝐵) ∧ (𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵)) → 𝑐 ∈ On) |
| 9 | 8 | ex 412 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐵 ∧ Ord 𝐵) → ((𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵) → 𝑐 ∈ On)) |
| 10 | 9 | pm4.71rd 562 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐵 ∧ Ord 𝐵) → ((𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵) ↔ (𝑐 ∈ On ∧ (𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵)))) |
| 11 | | df-an 396 |
. . . . . . 7
⊢ ((𝑐 ∈ On ∧ (𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵)) ↔ ¬ (𝑐 ∈ On → ¬ (𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵))) |
| 12 | 10, 11 | bitrdi 287 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐵 ∧ Ord 𝐵) → ((𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵) ↔ ¬ (𝑐 ∈ On → ¬ (𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵)))) |
| 13 | 6, 12 | bitr2d 280 |
. . . . 5
⊢ ((𝐴 ∈ 𝐵 ∧ Ord 𝐵) → (¬ (𝑐 ∈ On → ¬ (𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵)) ↔ 𝑐 ∈ (𝐵 ∖ suc 𝐴))) |
| 14 | 13 | con1bid 355 |
. . . 4
⊢ ((𝐴 ∈ 𝐵 ∧ Ord 𝐵) → (¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐 ∈ On → ¬ (𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵)))) |
| 15 | 14 | albidv 1920 |
. . 3
⊢ ((𝐴 ∈ 𝐵 ∧ Ord 𝐵) → (∀𝑐 ¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ ∀𝑐(𝑐 ∈ On → ¬ (𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵)))) |
| 16 | | eq0 4325 |
. . 3
⊢ ((𝐵 ∖ suc 𝐴) = ∅ ↔ ∀𝑐 ¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴)) |
| 17 | | df-ral 3052 |
. . 3
⊢
(∀𝑐 ∈ On
¬ (𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵) ↔ ∀𝑐(𝑐 ∈ On → ¬ (𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵))) |
| 18 | 15, 16, 17 | 3bitr4g 314 |
. 2
⊢ ((𝐴 ∈ 𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ ↔ ∀𝑐 ∈ On ¬ (𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵))) |
| 19 | | ordnexbtwnsuc 43291 |
. 2
⊢ ((𝐴 ∈ 𝐵 ∧ Ord 𝐵) → (∀𝑐 ∈ On ¬ (𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵) → 𝐵 = suc 𝐴)) |
| 20 | 18, 19 | sylbid 240 |
1
⊢ ((𝐴 ∈ 𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ → 𝐵 = suc 𝐴)) |