Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orddif0suc Structured version   Visualization version   GIF version

Theorem orddif0suc 43292
Description: For any distinct pair of ordinals, if the set difference between the greater and the successor of the lesser is empty, the greater is the successor of the lesser. Lemma 1.16 of [Schloeder] p. 2. (Contributed by RP, 17-Jan-2025.)
Assertion
Ref Expression
orddif0suc ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ → 𝐵 = suc 𝐴))

Proof of Theorem orddif0suc
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐵)
2 ordelon 6376 . . . . . . . . 9 ((Ord 𝐵𝐴𝐵) → 𝐴 ∈ On)
32ancoms 458 . . . . . . . 8 ((𝐴𝐵 ∧ Ord 𝐵) → 𝐴 ∈ On)
4 ordeldifsucon 43283 . . . . . . . 8 ((Ord 𝐵𝐴 ∈ On) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐𝐵𝐴𝑐)))
51, 3, 4syl2anc 584 . . . . . . 7 ((𝐴𝐵 ∧ Ord 𝐵) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐𝐵𝐴𝑐)))
65biancomd 463 . . . . . 6 ((𝐴𝐵 ∧ Ord 𝐵) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝐴𝑐𝑐𝐵)))
7 ordelon 6376 . . . . . . . . . 10 ((Ord 𝐵𝑐𝐵) → 𝑐 ∈ On)
87ad2ant2l 746 . . . . . . . . 9 (((𝐴𝐵 ∧ Ord 𝐵) ∧ (𝐴𝑐𝑐𝐵)) → 𝑐 ∈ On)
98ex 412 . . . . . . . 8 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐴𝑐𝑐𝐵) → 𝑐 ∈ On))
109pm4.71rd 562 . . . . . . 7 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐴𝑐𝑐𝐵) ↔ (𝑐 ∈ On ∧ (𝐴𝑐𝑐𝐵))))
11 df-an 396 . . . . . . 7 ((𝑐 ∈ On ∧ (𝐴𝑐𝑐𝐵)) ↔ ¬ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵)))
1210, 11bitrdi 287 . . . . . 6 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐴𝑐𝑐𝐵) ↔ ¬ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵))))
136, 12bitr2d 280 . . . . 5 ((𝐴𝐵 ∧ Ord 𝐵) → (¬ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵)) ↔ 𝑐 ∈ (𝐵 ∖ suc 𝐴)))
1413con1bid 355 . . . 4 ((𝐴𝐵 ∧ Ord 𝐵) → (¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵))))
1514albidv 1920 . . 3 ((𝐴𝐵 ∧ Ord 𝐵) → (∀𝑐 ¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ ∀𝑐(𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵))))
16 eq0 4325 . . 3 ((𝐵 ∖ suc 𝐴) = ∅ ↔ ∀𝑐 ¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴))
17 df-ral 3052 . . 3 (∀𝑐 ∈ On ¬ (𝐴𝑐𝑐𝐵) ↔ ∀𝑐(𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵)))
1815, 16, 173bitr4g 314 . 2 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ ↔ ∀𝑐 ∈ On ¬ (𝐴𝑐𝑐𝐵)))
19 ordnexbtwnsuc 43291 . 2 ((𝐴𝐵 ∧ Ord 𝐵) → (∀𝑐 ∈ On ¬ (𝐴𝑐𝑐𝐵) → 𝐵 = suc 𝐴))
2018, 19sylbid 240 1 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ → 𝐵 = suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2108  wral 3051  cdif 3923  c0 4308  Ord word 6351  Oncon0 6352  suc csuc 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-suc 6358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator