Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orddif0suc Structured version   Visualization version   GIF version

Theorem orddif0suc 42697
Description: For any distinct pair of ordinals, if the set difference between the greater and the successor of the lesser is empty, the greater is the successor of the lesser. Lemma 1.16 of [Schloeder] p. 2. (Contributed by RP, 17-Jan-2025.)
Assertion
Ref Expression
orddif0suc ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ → 𝐵 = suc 𝐴))

Proof of Theorem orddif0suc
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐵)
2 ordelon 6393 . . . . . . . . 9 ((Ord 𝐵𝐴𝐵) → 𝐴 ∈ On)
32ancoms 458 . . . . . . . 8 ((𝐴𝐵 ∧ Ord 𝐵) → 𝐴 ∈ On)
4 ordeldifsucon 42688 . . . . . . . 8 ((Ord 𝐵𝐴 ∈ On) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐𝐵𝐴𝑐)))
51, 3, 4syl2anc 583 . . . . . . 7 ((𝐴𝐵 ∧ Ord 𝐵) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐𝐵𝐴𝑐)))
65biancomd 463 . . . . . 6 ((𝐴𝐵 ∧ Ord 𝐵) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝐴𝑐𝑐𝐵)))
7 ordelon 6393 . . . . . . . . . 10 ((Ord 𝐵𝑐𝐵) → 𝑐 ∈ On)
87ad2ant2l 745 . . . . . . . . 9 (((𝐴𝐵 ∧ Ord 𝐵) ∧ (𝐴𝑐𝑐𝐵)) → 𝑐 ∈ On)
98ex 412 . . . . . . . 8 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐴𝑐𝑐𝐵) → 𝑐 ∈ On))
109pm4.71rd 562 . . . . . . 7 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐴𝑐𝑐𝐵) ↔ (𝑐 ∈ On ∧ (𝐴𝑐𝑐𝐵))))
11 df-an 396 . . . . . . 7 ((𝑐 ∈ On ∧ (𝐴𝑐𝑐𝐵)) ↔ ¬ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵)))
1210, 11bitrdi 287 . . . . . 6 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐴𝑐𝑐𝐵) ↔ ¬ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵))))
136, 12bitr2d 280 . . . . 5 ((𝐴𝐵 ∧ Ord 𝐵) → (¬ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵)) ↔ 𝑐 ∈ (𝐵 ∖ suc 𝐴)))
1413con1bid 355 . . . 4 ((𝐴𝐵 ∧ Ord 𝐵) → (¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵))))
1514albidv 1916 . . 3 ((𝐴𝐵 ∧ Ord 𝐵) → (∀𝑐 ¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ ∀𝑐(𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵))))
16 eq0 4344 . . 3 ((𝐵 ∖ suc 𝐴) = ∅ ↔ ∀𝑐 ¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴))
17 df-ral 3059 . . 3 (∀𝑐 ∈ On ¬ (𝐴𝑐𝑐𝐵) ↔ ∀𝑐(𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵)))
1815, 16, 173bitr4g 314 . 2 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ ↔ ∀𝑐 ∈ On ¬ (𝐴𝑐𝑐𝐵)))
19 ordnexbtwnsuc 42696 . 2 ((𝐴𝐵 ∧ Ord 𝐵) → (∀𝑐 ∈ On ¬ (𝐴𝑐𝑐𝐵) → 𝐵 = suc 𝐴))
2018, 19sylbid 239 1 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ → 𝐵 = suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1532   = wceq 1534  wcel 2099  wral 3058  cdif 3944  c0 4323  Ord word 6368  Oncon0 6369  suc csuc 6371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-ord 6372  df-on 6373  df-suc 6375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator