Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orddif0suc Structured version   Visualization version   GIF version

Theorem orddif0suc 43257
Description: For any distinct pair of ordinals, if the set difference between the greater and the successor of the lesser is empty, the greater is the successor of the lesser. Lemma 1.16 of [Schloeder] p. 2. (Contributed by RP, 17-Jan-2025.)
Assertion
Ref Expression
orddif0suc ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ → 𝐵 = suc 𝐴))

Proof of Theorem orddif0suc
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐵)
2 ordelon 6356 . . . . . . . . 9 ((Ord 𝐵𝐴𝐵) → 𝐴 ∈ On)
32ancoms 458 . . . . . . . 8 ((𝐴𝐵 ∧ Ord 𝐵) → 𝐴 ∈ On)
4 ordeldifsucon 43248 . . . . . . . 8 ((Ord 𝐵𝐴 ∈ On) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐𝐵𝐴𝑐)))
51, 3, 4syl2anc 584 . . . . . . 7 ((𝐴𝐵 ∧ Ord 𝐵) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐𝐵𝐴𝑐)))
65biancomd 463 . . . . . 6 ((𝐴𝐵 ∧ Ord 𝐵) → (𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝐴𝑐𝑐𝐵)))
7 ordelon 6356 . . . . . . . . . 10 ((Ord 𝐵𝑐𝐵) → 𝑐 ∈ On)
87ad2ant2l 746 . . . . . . . . 9 (((𝐴𝐵 ∧ Ord 𝐵) ∧ (𝐴𝑐𝑐𝐵)) → 𝑐 ∈ On)
98ex 412 . . . . . . . 8 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐴𝑐𝑐𝐵) → 𝑐 ∈ On))
109pm4.71rd 562 . . . . . . 7 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐴𝑐𝑐𝐵) ↔ (𝑐 ∈ On ∧ (𝐴𝑐𝑐𝐵))))
11 df-an 396 . . . . . . 7 ((𝑐 ∈ On ∧ (𝐴𝑐𝑐𝐵)) ↔ ¬ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵)))
1210, 11bitrdi 287 . . . . . 6 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐴𝑐𝑐𝐵) ↔ ¬ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵))))
136, 12bitr2d 280 . . . . 5 ((𝐴𝐵 ∧ Ord 𝐵) → (¬ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵)) ↔ 𝑐 ∈ (𝐵 ∖ suc 𝐴)))
1413con1bid 355 . . . 4 ((𝐴𝐵 ∧ Ord 𝐵) → (¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵))))
1514albidv 1920 . . 3 ((𝐴𝐵 ∧ Ord 𝐵) → (∀𝑐 ¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴) ↔ ∀𝑐(𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵))))
16 eq0 4313 . . 3 ((𝐵 ∖ suc 𝐴) = ∅ ↔ ∀𝑐 ¬ 𝑐 ∈ (𝐵 ∖ suc 𝐴))
17 df-ral 3045 . . 3 (∀𝑐 ∈ On ¬ (𝐴𝑐𝑐𝐵) ↔ ∀𝑐(𝑐 ∈ On → ¬ (𝐴𝑐𝑐𝐵)))
1815, 16, 173bitr4g 314 . 2 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ ↔ ∀𝑐 ∈ On ¬ (𝐴𝑐𝑐𝐵)))
19 ordnexbtwnsuc 43256 . 2 ((𝐴𝐵 ∧ Ord 𝐵) → (∀𝑐 ∈ On ¬ (𝐴𝑐𝑐𝐵) → 𝐵 = suc 𝐴))
2018, 19sylbid 240 1 ((𝐴𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ → 𝐵 = suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  cdif 3911  c0 4296  Ord word 6331  Oncon0 6332  suc csuc 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336  df-suc 6338
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator