MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s2cli Structured version   Visualization version   GIF version

Theorem s2cli 14235
Description: A doubleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s2cli ⟨“𝐴𝐵”⟩ ∈ Word V

Proof of Theorem s2cli
StepHypRef Expression
1 df-s2 14203 . 2 ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
2 s1cli 13952 . 2 ⟨“𝐴”⟩ ∈ Word V
31, 2cats1cli 14212 1 ⟨“𝐴𝐵”⟩ ∈ Word V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3499  Word cword 13854  ⟨“cs1 13942  ⟨“cs2 14196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027  df-hash 13684  df-word 13855  df-concat 13916  df-s1 13943  df-s2 14203
This theorem is referenced by:  s3cli  14236  s2dm  14245  s3fv0  14246  s3fv1  14247  s3fv2  14248  s3len  14249  lsws2  14259  s1s3  14279  s2s2  14284  s4s3  14286  s3s4  14288  pfx2  14302  ccat2s1fvwALT  14311  2wlkd  27630  2wlkond  27631  2trlond  27633  2pthond  27636  umgr2adedgwlkonALT  27641  umgr2wlk  27643  1pthon2v  27847  konigsberglem1  27946  konigsberglem2  27947  konigsberglem3  27948  lmat22e12  30971  lmat22e21  30972  lmat22e22  30973  loop1cycl  32269  umgr2cycl  32273
  Copyright terms: Public domain W3C validator