![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s2prop | Structured version Visualization version GIF version |
Description: A length 2 word is an unordered pair of ordered pairs. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
Ref | Expression |
---|---|
s2prop | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 〈“𝐴𝐵”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s2 14883 | . 2 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
2 | s1cl 14636 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 〈“𝐴”〉 ∈ Word 𝑆) | |
3 | cats1un 14755 | . . . 4 ⊢ ((〈“𝐴”〉 ∈ Word 𝑆 ∧ 𝐵 ∈ 𝑆) → (〈“𝐴”〉 ++ 〈“𝐵”〉) = (〈“𝐴”〉 ∪ {〈(♯‘〈“𝐴”〉), 𝐵〉})) | |
4 | 2, 3 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (〈“𝐴”〉 ++ 〈“𝐵”〉) = (〈“𝐴”〉 ∪ {〈(♯‘〈“𝐴”〉), 𝐵〉})) |
5 | s1val 14632 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 〈“𝐴”〉 = {〈0, 𝐴〉}) |
7 | 6 | uneq1d 4176 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (〈“𝐴”〉 ∪ {〈(♯‘〈“𝐴”〉), 𝐵〉}) = ({〈0, 𝐴〉} ∪ {〈(♯‘〈“𝐴”〉), 𝐵〉})) |
8 | df-pr 4633 | . . . 4 ⊢ {〈0, 𝐴〉, 〈(♯‘〈“𝐴”〉), 𝐵〉} = ({〈0, 𝐴〉} ∪ {〈(♯‘〈“𝐴”〉), 𝐵〉}) | |
9 | s1len 14640 | . . . . . . 7 ⊢ (♯‘〈“𝐴”〉) = 1 | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (♯‘〈“𝐴”〉) = 1) |
11 | 10 | opeq1d 4883 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 〈(♯‘〈“𝐴”〉), 𝐵〉 = 〈1, 𝐵〉) |
12 | 11 | preq2d 4744 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {〈0, 𝐴〉, 〈(♯‘〈“𝐴”〉), 𝐵〉} = {〈0, 𝐴〉, 〈1, 𝐵〉}) |
13 | 8, 12 | eqtr3id 2788 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ({〈0, 𝐴〉} ∪ {〈(♯‘〈“𝐴”〉), 𝐵〉}) = {〈0, 𝐴〉, 〈1, 𝐵〉}) |
14 | 4, 7, 13 | 3eqtrd 2778 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (〈“𝐴”〉 ++ 〈“𝐵”〉) = {〈0, 𝐴〉, 〈1, 𝐵〉}) |
15 | 1, 14 | eqtrid 2786 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 〈“𝐴𝐵”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∪ cun 3960 {csn 4630 {cpr 4632 〈cop 4636 ‘cfv 6562 (class class class)co 7430 0cc0 11152 1c1 11153 ♯chash 14365 Word cword 14548 ++ cconcat 14604 〈“cs1 14629 〈“cs2 14876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-fzo 13691 df-hash 14366 df-word 14549 df-concat 14605 df-s1 14630 df-s2 14883 |
This theorem is referenced by: s2dmALT 14943 s3tpop 14944 s4prop 14945 funcnvs2 14948 s2f1o 14951 wrdlen2s2 14980 uhgrwkspthlem2 29786 ntrl2v2e 30186 s2f1 32913 cycpm2tr 33121 |
Copyright terms: Public domain | W3C validator |