| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s2prop | Structured version Visualization version GIF version | ||
| Description: A length 2 word is an unordered pair of ordered pairs. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
| Ref | Expression |
|---|---|
| s2prop | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 〈“𝐴𝐵”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s2 14865 | . 2 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
| 2 | s1cl 14618 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 〈“𝐴”〉 ∈ Word 𝑆) | |
| 3 | cats1un 14737 | . . . 4 ⊢ ((〈“𝐴”〉 ∈ Word 𝑆 ∧ 𝐵 ∈ 𝑆) → (〈“𝐴”〉 ++ 〈“𝐵”〉) = (〈“𝐴”〉 ∪ {〈(♯‘〈“𝐴”〉), 𝐵〉})) | |
| 4 | 2, 3 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (〈“𝐴”〉 ++ 〈“𝐵”〉) = (〈“𝐴”〉 ∪ {〈(♯‘〈“𝐴”〉), 𝐵〉})) |
| 5 | s1val 14614 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 〈“𝐴”〉 = {〈0, 𝐴〉}) |
| 7 | 6 | uneq1d 4142 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (〈“𝐴”〉 ∪ {〈(♯‘〈“𝐴”〉), 𝐵〉}) = ({〈0, 𝐴〉} ∪ {〈(♯‘〈“𝐴”〉), 𝐵〉})) |
| 8 | df-pr 4604 | . . . 4 ⊢ {〈0, 𝐴〉, 〈(♯‘〈“𝐴”〉), 𝐵〉} = ({〈0, 𝐴〉} ∪ {〈(♯‘〈“𝐴”〉), 𝐵〉}) | |
| 9 | s1len 14622 | . . . . . . 7 ⊢ (♯‘〈“𝐴”〉) = 1 | |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (♯‘〈“𝐴”〉) = 1) |
| 11 | 10 | opeq1d 4855 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 〈(♯‘〈“𝐴”〉), 𝐵〉 = 〈1, 𝐵〉) |
| 12 | 11 | preq2d 4716 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → {〈0, 𝐴〉, 〈(♯‘〈“𝐴”〉), 𝐵〉} = {〈0, 𝐴〉, 〈1, 𝐵〉}) |
| 13 | 8, 12 | eqtr3id 2784 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ({〈0, 𝐴〉} ∪ {〈(♯‘〈“𝐴”〉), 𝐵〉}) = {〈0, 𝐴〉, 〈1, 𝐵〉}) |
| 14 | 4, 7, 13 | 3eqtrd 2774 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (〈“𝐴”〉 ++ 〈“𝐵”〉) = {〈0, 𝐴〉, 〈1, 𝐵〉}) |
| 15 | 1, 14 | eqtrid 2782 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 〈“𝐴𝐵”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 {csn 4601 {cpr 4603 〈cop 4607 ‘cfv 6530 (class class class)co 7403 0cc0 11127 1c1 11128 ♯chash 14346 Word cword 14529 ++ cconcat 14586 〈“cs1 14611 〈“cs2 14858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-fzo 13670 df-hash 14347 df-word 14530 df-concat 14587 df-s1 14612 df-s2 14865 |
| This theorem is referenced by: s2dmALT 14925 s3tpop 14926 s4prop 14927 funcnvs2 14930 s2f1o 14933 wrdlen2s2 14962 uhgrwkspthlem2 29682 ntrl2v2e 30085 s2f1 32866 cycpm2tr 33076 |
| Copyright terms: Public domain | W3C validator |