MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s2eq2s1eq Structured version   Visualization version   GIF version

Theorem s2eq2s1eq 14380
Description: Two length 2 words are equal iff the corresponding singleton words consisting of their symbols are equal. (Contributed by Alexander van der Vekens, 24-Sep-2018.)
Assertion
Ref Expression
s2eq2s1eq (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (⟨“𝐴𝐵”⟩ = ⟨“𝐶𝐷”⟩ ↔ (⟨“𝐴”⟩ = ⟨“𝐶”⟩ ∧ ⟨“𝐵”⟩ = ⟨“𝐷”⟩)))

Proof of Theorem s2eq2s1eq
StepHypRef Expression
1 df-s2 14292 . . . 4 ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
21a1i 11 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩))
3 df-s2 14292 . . . 4 ⟨“𝐶𝐷”⟩ = (⟨“𝐶”⟩ ++ ⟨“𝐷”⟩)
43a1i 11 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ⟨“𝐶𝐷”⟩ = (⟨“𝐶”⟩ ++ ⟨“𝐷”⟩))
52, 4eqeq12d 2754 . 2 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (⟨“𝐴𝐵”⟩ = ⟨“𝐶𝐷”⟩ ↔ (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) = (⟨“𝐶”⟩ ++ ⟨“𝐷”⟩)))
6 s1cl 14038 . . . . 5 (𝐴𝑉 → ⟨“𝐴”⟩ ∈ Word 𝑉)
7 s1cl 14038 . . . . 5 (𝐵𝑉 → ⟨“𝐵”⟩ ∈ Word 𝑉)
86, 7anim12i 616 . . . 4 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴”⟩ ∈ Word 𝑉 ∧ ⟨“𝐵”⟩ ∈ Word 𝑉))
98adantr 484 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (⟨“𝐴”⟩ ∈ Word 𝑉 ∧ ⟨“𝐵”⟩ ∈ Word 𝑉))
10 s1cl 14038 . . . . 5 (𝐶𝑉 → ⟨“𝐶”⟩ ∈ Word 𝑉)
11 s1cl 14038 . . . . 5 (𝐷𝑉 → ⟨“𝐷”⟩ ∈ Word 𝑉)
1210, 11anim12i 616 . . . 4 ((𝐶𝑉𝐷𝑉) → (⟨“𝐶”⟩ ∈ Word 𝑉 ∧ ⟨“𝐷”⟩ ∈ Word 𝑉))
1312adantl 485 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (⟨“𝐶”⟩ ∈ Word 𝑉 ∧ ⟨“𝐷”⟩ ∈ Word 𝑉))
14 s1len 14042 . . . . 5 (♯‘⟨“𝐴”⟩) = 1
15 s1len 14042 . . . . 5 (♯‘⟨“𝐶”⟩) = 1
1614, 15eqtr4i 2764 . . . 4 (♯‘⟨“𝐴”⟩) = (♯‘⟨“𝐶”⟩)
1716a1i 11 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (♯‘⟨“𝐴”⟩) = (♯‘⟨“𝐶”⟩))
18 ccatopth 14160 . . 3 (((⟨“𝐴”⟩ ∈ Word 𝑉 ∧ ⟨“𝐵”⟩ ∈ Word 𝑉) ∧ (⟨“𝐶”⟩ ∈ Word 𝑉 ∧ ⟨“𝐷”⟩ ∈ Word 𝑉) ∧ (♯‘⟨“𝐴”⟩) = (♯‘⟨“𝐶”⟩)) → ((⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) = (⟨“𝐶”⟩ ++ ⟨“𝐷”⟩) ↔ (⟨“𝐴”⟩ = ⟨“𝐶”⟩ ∧ ⟨“𝐵”⟩ = ⟨“𝐷”⟩)))
199, 13, 17, 18syl3anc 1372 . 2 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) = (⟨“𝐶”⟩ ++ ⟨“𝐷”⟩) ↔ (⟨“𝐴”⟩ = ⟨“𝐶”⟩ ∧ ⟨“𝐵”⟩ = ⟨“𝐷”⟩)))
205, 19bitrd 282 1 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (⟨“𝐴𝐵”⟩ = ⟨“𝐶𝐷”⟩ ↔ (⟨“𝐴”⟩ = ⟨“𝐶”⟩ ∧ ⟨“𝐵”⟩ = ⟨“𝐷”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  cfv 6333  (class class class)co 7164  1c1 10609  chash 13775  Word cword 13948   ++ cconcat 14004  ⟨“cs1 14031  ⟨“cs2 14285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-n0 11970  df-z 12056  df-uz 12318  df-fz 12975  df-fzo 13118  df-hash 13776  df-word 13949  df-concat 14005  df-s1 14032  df-substr 14085  df-pfx 14115  df-s2 14292
This theorem is referenced by:  s2eq2seq  14381  2swrd2eqwrdeq  14397
  Copyright terms: Public domain W3C validator