MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s2eq2s1eq Structured version   Visualization version   GIF version

Theorem s2eq2s1eq 14577
Description: Two length 2 words are equal iff the corresponding singleton words consisting of their symbols are equal. (Contributed by Alexander van der Vekens, 24-Sep-2018.)
Assertion
Ref Expression
s2eq2s1eq (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (⟨“𝐴𝐵”⟩ = ⟨“𝐶𝐷”⟩ ↔ (⟨“𝐴”⟩ = ⟨“𝐶”⟩ ∧ ⟨“𝐵”⟩ = ⟨“𝐷”⟩)))

Proof of Theorem s2eq2s1eq
StepHypRef Expression
1 df-s2 14489 . . . 4 ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
21a1i 11 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩))
3 df-s2 14489 . . . 4 ⟨“𝐶𝐷”⟩ = (⟨“𝐶”⟩ ++ ⟨“𝐷”⟩)
43a1i 11 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ⟨“𝐶𝐷”⟩ = (⟨“𝐶”⟩ ++ ⟨“𝐷”⟩))
52, 4eqeq12d 2754 . 2 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (⟨“𝐴𝐵”⟩ = ⟨“𝐶𝐷”⟩ ↔ (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) = (⟨“𝐶”⟩ ++ ⟨“𝐷”⟩)))
6 s1cl 14235 . . . . 5 (𝐴𝑉 → ⟨“𝐴”⟩ ∈ Word 𝑉)
7 s1cl 14235 . . . . 5 (𝐵𝑉 → ⟨“𝐵”⟩ ∈ Word 𝑉)
86, 7anim12i 612 . . . 4 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴”⟩ ∈ Word 𝑉 ∧ ⟨“𝐵”⟩ ∈ Word 𝑉))
98adantr 480 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (⟨“𝐴”⟩ ∈ Word 𝑉 ∧ ⟨“𝐵”⟩ ∈ Word 𝑉))
10 s1cl 14235 . . . . 5 (𝐶𝑉 → ⟨“𝐶”⟩ ∈ Word 𝑉)
11 s1cl 14235 . . . . 5 (𝐷𝑉 → ⟨“𝐷”⟩ ∈ Word 𝑉)
1210, 11anim12i 612 . . . 4 ((𝐶𝑉𝐷𝑉) → (⟨“𝐶”⟩ ∈ Word 𝑉 ∧ ⟨“𝐷”⟩ ∈ Word 𝑉))
1312adantl 481 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (⟨“𝐶”⟩ ∈ Word 𝑉 ∧ ⟨“𝐷”⟩ ∈ Word 𝑉))
14 s1len 14239 . . . . 5 (♯‘⟨“𝐴”⟩) = 1
15 s1len 14239 . . . . 5 (♯‘⟨“𝐶”⟩) = 1
1614, 15eqtr4i 2769 . . . 4 (♯‘⟨“𝐴”⟩) = (♯‘⟨“𝐶”⟩)
1716a1i 11 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (♯‘⟨“𝐴”⟩) = (♯‘⟨“𝐶”⟩))
18 ccatopth 14357 . . 3 (((⟨“𝐴”⟩ ∈ Word 𝑉 ∧ ⟨“𝐵”⟩ ∈ Word 𝑉) ∧ (⟨“𝐶”⟩ ∈ Word 𝑉 ∧ ⟨“𝐷”⟩ ∈ Word 𝑉) ∧ (♯‘⟨“𝐴”⟩) = (♯‘⟨“𝐶”⟩)) → ((⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) = (⟨“𝐶”⟩ ++ ⟨“𝐷”⟩) ↔ (⟨“𝐴”⟩ = ⟨“𝐶”⟩ ∧ ⟨“𝐵”⟩ = ⟨“𝐷”⟩)))
199, 13, 17, 18syl3anc 1369 . 2 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) = (⟨“𝐶”⟩ ++ ⟨“𝐷”⟩) ↔ (⟨“𝐴”⟩ = ⟨“𝐶”⟩ ∧ ⟨“𝐵”⟩ = ⟨“𝐷”⟩)))
205, 19bitrd 278 1 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (⟨“𝐴𝐵”⟩ = ⟨“𝐶𝐷”⟩ ↔ (⟨“𝐴”⟩ = ⟨“𝐶”⟩ ∧ ⟨“𝐵”⟩ = ⟨“𝐷”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  1c1 10803  chash 13972  Word cword 14145   ++ cconcat 14201  ⟨“cs1 14228  ⟨“cs2 14482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-s2 14489
This theorem is referenced by:  s2eq2seq  14578  2swrd2eqwrdeq  14594
  Copyright terms: Public domain W3C validator