![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s2eq2s1eq | Structured version Visualization version GIF version |
Description: Two length 2 words are equal iff the corresponding singleton words consisting of their symbols are equal. (Contributed by Alexander van der Vekens, 24-Sep-2018.) |
Ref | Expression |
---|---|
s2eq2s1eq | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (〈“𝐴𝐵”〉 = 〈“𝐶𝐷”〉 ↔ (〈“𝐴”〉 = 〈“𝐶”〉 ∧ 〈“𝐵”〉 = 〈“𝐷”〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s2 14795 | . . . 4 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
2 | 1 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉)) |
3 | df-s2 14795 | . . . 4 ⊢ 〈“𝐶𝐷”〉 = (〈“𝐶”〉 ++ 〈“𝐷”〉) | |
4 | 3 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 〈“𝐶𝐷”〉 = (〈“𝐶”〉 ++ 〈“𝐷”〉)) |
5 | 2, 4 | eqeq12d 2749 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (〈“𝐴𝐵”〉 = 〈“𝐶𝐷”〉 ↔ (〈“𝐴”〉 ++ 〈“𝐵”〉) = (〈“𝐶”〉 ++ 〈“𝐷”〉))) |
6 | s1cl 14548 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 ∈ Word 𝑉) | |
7 | s1cl 14548 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → 〈“𝐵”〉 ∈ Word 𝑉) | |
8 | 6, 7 | anim12i 614 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (〈“𝐴”〉 ∈ Word 𝑉 ∧ 〈“𝐵”〉 ∈ Word 𝑉)) |
9 | 8 | adantr 482 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (〈“𝐴”〉 ∈ Word 𝑉 ∧ 〈“𝐵”〉 ∈ Word 𝑉)) |
10 | s1cl 14548 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → 〈“𝐶”〉 ∈ Word 𝑉) | |
11 | s1cl 14548 | . . . . 5 ⊢ (𝐷 ∈ 𝑉 → 〈“𝐷”〉 ∈ Word 𝑉) | |
12 | 10, 11 | anim12i 614 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (〈“𝐶”〉 ∈ Word 𝑉 ∧ 〈“𝐷”〉 ∈ Word 𝑉)) |
13 | 12 | adantl 483 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (〈“𝐶”〉 ∈ Word 𝑉 ∧ 〈“𝐷”〉 ∈ Word 𝑉)) |
14 | s1len 14552 | . . . . 5 ⊢ (♯‘〈“𝐴”〉) = 1 | |
15 | s1len 14552 | . . . . 5 ⊢ (♯‘〈“𝐶”〉) = 1 | |
16 | 14, 15 | eqtr4i 2764 | . . . 4 ⊢ (♯‘〈“𝐴”〉) = (♯‘〈“𝐶”〉) |
17 | 16 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (♯‘〈“𝐴”〉) = (♯‘〈“𝐶”〉)) |
18 | ccatopth 14662 | . . 3 ⊢ (((〈“𝐴”〉 ∈ Word 𝑉 ∧ 〈“𝐵”〉 ∈ Word 𝑉) ∧ (〈“𝐶”〉 ∈ Word 𝑉 ∧ 〈“𝐷”〉 ∈ Word 𝑉) ∧ (♯‘〈“𝐴”〉) = (♯‘〈“𝐶”〉)) → ((〈“𝐴”〉 ++ 〈“𝐵”〉) = (〈“𝐶”〉 ++ 〈“𝐷”〉) ↔ (〈“𝐴”〉 = 〈“𝐶”〉 ∧ 〈“𝐵”〉 = 〈“𝐷”〉))) | |
19 | 9, 13, 17, 18 | syl3anc 1372 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((〈“𝐴”〉 ++ 〈“𝐵”〉) = (〈“𝐶”〉 ++ 〈“𝐷”〉) ↔ (〈“𝐴”〉 = 〈“𝐶”〉 ∧ 〈“𝐵”〉 = 〈“𝐷”〉))) |
20 | 5, 19 | bitrd 279 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (〈“𝐴𝐵”〉 = 〈“𝐶𝐷”〉 ↔ (〈“𝐴”〉 = 〈“𝐶”〉 ∧ 〈“𝐵”〉 = 〈“𝐷”〉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6540 (class class class)co 7404 1c1 11107 ♯chash 14286 Word cword 14460 ++ cconcat 14516 〈“cs1 14541 〈“cs2 14788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-concat 14517 df-s1 14542 df-substr 14587 df-pfx 14617 df-s2 14795 |
This theorem is referenced by: s2eq2seq 14884 2swrd2eqwrdeq 14900 |
Copyright terms: Public domain | W3C validator |