Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s2len | Structured version Visualization version GIF version |
Description: The length of a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s2len | ⊢ (♯‘〈“𝐴𝐵”〉) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s2 14262 | . 2 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
2 | s1cli 14011 | . 2 ⊢ 〈“𝐴”〉 ∈ Word V | |
3 | s1len 14012 | . 2 ⊢ (♯‘〈“𝐴”〉) = 1 | |
4 | 1p1e2 11804 | . 2 ⊢ (1 + 1) = 2 | |
5 | 1, 2, 3, 4 | cats1len 14274 | 1 ⊢ (♯‘〈“𝐴𝐵”〉) = 2 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ‘cfv 6339 1c1 10581 2c2 11734 ♯chash 13745 〈“cs1 14001 〈“cs2 14255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-card 9406 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-fzo 13088 df-hash 13746 df-word 13919 df-concat 13975 df-s1 14002 df-s2 14262 |
This theorem is referenced by: s2dm 14304 s3fv0 14305 s3fv1 14306 s3fv2 14307 s3len 14308 lsws2 14318 s3tpop 14323 s4prop 14324 s3eqs2s1eq 14352 pfx2 14361 psgnunilem2 18695 efgtlen 18924 efgredleme 18941 efgredlemc 18943 frgpnabllem1 19066 2wlkdlem1 27815 2wlkdlem2 27816 2wlkdlem4 27818 2pthdlem1 27820 2wlkond 27827 2pthd 27830 2pthon3v 27833 umgr2adedgwlk 27835 s2elclwwlknon2 27993 1wlkdlem1 28026 wlk2v2e 28046 pfx1s2 30741 s2rn 30746 cshw1s2 30760 cyc2fv1 30918 cyc2fv2 30919 lmat22lem 31292 lmat22e11 31293 lmat22e12 31294 lmat22e21 31295 lmat22e22 31296 lmat22det 31297 fiblem 31888 fib0 31889 fib1 31890 fibp1 31891 2cycld 32620 umgr2cycl 32623 amgm2d 41305 amgmw2d 45796 |
Copyright terms: Public domain | W3C validator |