| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s2len | Structured version Visualization version GIF version | ||
| Description: The length of a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s2len | ⊢ (♯‘〈“𝐴𝐵”〉) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s2 14759 | . 2 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
| 2 | s1cli 14517 | . 2 ⊢ 〈“𝐴”〉 ∈ Word V | |
| 3 | s1len 14518 | . 2 ⊢ (♯‘〈“𝐴”〉) = 1 | |
| 4 | 1p1e2 12254 | . 2 ⊢ (1 + 1) = 2 | |
| 5 | 1, 2, 3, 4 | cats1len 14771 | 1 ⊢ (♯‘〈“𝐴𝐵”〉) = 2 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ‘cfv 6488 1c1 11016 2c2 12189 ♯chash 14241 〈“cs1 14507 〈“cs2 14752 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-hash 14242 df-word 14425 df-concat 14482 df-s1 14508 df-s2 14759 |
| This theorem is referenced by: s2dm 14801 s3fv0 14802 s3fv1 14803 s3fv2 14804 s3len 14805 lsws2 14815 s3tpop 14820 s4prop 14821 s3eqs2s1eq 14849 pfx2 14858 psgnunilem2 19411 efgtlen 19642 efgredleme 19659 efgredlemc 19661 frgpnabllem1 19789 2wlkdlem1 29907 2wlkdlem2 29908 2wlkdlem4 29910 2pthdlem1 29912 2wlkond 29919 2pthd 29922 2pthon3v 29925 umgr2adedgwlk 29927 s2elclwwlknon2 30088 1wlkdlem1 30121 wlk2v2e 30141 pfx1s2 32929 s2rnOLD 32934 cshw1s2 32950 cyc2fv1 33099 cyc2fv2 33100 lmat22lem 33853 lmat22e11 33854 lmat22e12 33855 lmat22e21 33856 lmat22e22 33857 lmat22det 33858 fiblem 34434 fib0 34435 fib1 34436 fibp1 34437 2cycld 35205 umgr2cycl 35208 amgm2d 44318 amgmw2d 49932 |
| Copyright terms: Public domain | W3C validator |