| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s2len | Structured version Visualization version GIF version | ||
| Description: The length of a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s2len | ⊢ (♯‘〈“𝐴𝐵”〉) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s2 14755 | . 2 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
| 2 | s1cli 14513 | . 2 ⊢ 〈“𝐴”〉 ∈ Word V | |
| 3 | s1len 14514 | . 2 ⊢ (♯‘〈“𝐴”〉) = 1 | |
| 4 | 1p1e2 12245 | . 2 ⊢ (1 + 1) = 2 | |
| 5 | 1, 2, 3, 4 | cats1len 14767 | 1 ⊢ (♯‘〈“𝐴𝐵”〉) = 2 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ‘cfv 6481 1c1 11007 2c2 12180 ♯chash 14237 〈“cs1 14503 〈“cs2 14748 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-s2 14755 |
| This theorem is referenced by: s2dm 14797 s3fv0 14798 s3fv1 14799 s3fv2 14800 s3len 14801 lsws2 14811 s3tpop 14816 s4prop 14817 s3eqs2s1eq 14845 pfx2 14854 psgnunilem2 19408 efgtlen 19639 efgredleme 19656 efgredlemc 19658 frgpnabllem1 19786 2wlkdlem1 29904 2wlkdlem2 29905 2wlkdlem4 29907 2pthdlem1 29909 2wlkond 29916 2pthd 29919 2pthon3v 29922 umgr2adedgwlk 29924 s2elclwwlknon2 30082 1wlkdlem1 30115 wlk2v2e 30135 pfx1s2 32918 s2rnOLD 32923 cshw1s2 32939 cyc2fv1 33088 cyc2fv2 33089 lmat22lem 33828 lmat22e11 33829 lmat22e12 33830 lmat22e21 33831 lmat22e22 33832 lmat22det 33833 fiblem 34409 fib0 34410 fib1 34411 fibp1 34412 2cycld 35180 umgr2cycl 35183 amgm2d 44237 amgmw2d 49842 |
| Copyright terms: Public domain | W3C validator |