![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s2s5 | Structured version Visualization version GIF version |
Description: Concatenation of fixed length strings. (Contributed by AV, 1-Mar-2021.) |
Ref | Expression |
---|---|
s2s5 | ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶𝐷𝐸𝐹𝐺”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1s2 14934 | . . . 4 ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴”〉 ++ 〈“𝐵𝐶”〉) | |
2 | 1 | eqcomi 2735 | . . 3 ⊢ (〈“𝐴”〉 ++ 〈“𝐵𝐶”〉) = 〈“𝐴𝐵𝐶”〉 |
3 | 2 | oveq1i 7436 | . 2 ⊢ ((〈“𝐴”〉 ++ 〈“𝐵𝐶”〉) ++ 〈“𝐷𝐸𝐹𝐺”〉) = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷𝐸𝐹𝐺”〉) |
4 | s1cli 14615 | . . 3 ⊢ 〈“𝐴”〉 ∈ Word V | |
5 | s4cli 14893 | . . 3 ⊢ 〈“𝐷𝐸𝐹𝐺”〉 ∈ Word V | |
6 | df-s2 14859 | . . 3 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
7 | s1s4 14936 | . . 3 ⊢ 〈“𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐶”〉 ++ 〈“𝐷𝐸𝐹𝐺”〉) | |
8 | 4, 5, 6, 7 | cats2cat 14873 | . 2 ⊢ (〈“𝐴𝐵”〉 ++ 〈“𝐶𝐷𝐸𝐹𝐺”〉) = ((〈“𝐴”〉 ++ 〈“𝐵𝐶”〉) ++ 〈“𝐷𝐸𝐹𝐺”〉) |
9 | s3s4 14944 | . 2 ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷𝐸𝐹𝐺”〉) | |
10 | 3, 8, 9 | 3eqtr4ri 2765 | 1 ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶𝐷𝐸𝐹𝐺”〉) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 (class class class)co 7426 ++ cconcat 14580 〈“cs1 14605 〈“cs2 14852 〈“cs3 14853 〈“cs4 14854 〈“cs5 14855 〈“cs7 14857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-int 4957 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8005 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-1o 8498 df-er 8736 df-en 8977 df-dom 8978 df-sdom 8979 df-fin 8980 df-card 9984 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-nn 12267 df-n0 12527 df-z 12613 df-uz 12877 df-fz 13541 df-fzo 13684 df-hash 14350 df-word 14525 df-concat 14581 df-s1 14606 df-s2 14859 df-s3 14860 df-s4 14861 df-s5 14862 df-s6 14863 df-s7 14864 |
This theorem is referenced by: konigsberglem1 30188 konigsberglem2 30189 konigsberglem3 30190 |
Copyright terms: Public domain | W3C validator |