MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s2cld Structured version   Visualization version   GIF version

Theorem s2cld 14813
Description: A doubleton word is a word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2cld.1 (𝜑𝐴𝑋)
s2cld.2 (𝜑𝐵𝑋)
Assertion
Ref Expression
s2cld (𝜑 → ⟨“𝐴𝐵”⟩ ∈ Word 𝑋)

Proof of Theorem s2cld
StepHypRef Expression
1 df-s2 14790 . 2 ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
2 s2cld.1 . . 3 (𝜑𝐴𝑋)
32s1cld 14544 . 2 (𝜑 → ⟨“𝐴”⟩ ∈ Word 𝑋)
4 s2cld.2 . 2 (𝜑𝐵𝑋)
51, 3, 4cats1cld 14797 1 (𝜑 → ⟨“𝐴𝐵”⟩ ∈ Word 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Word cword 14454  ⟨“cs1 14536  ⟨“cs2 14783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-s2 14790
This theorem is referenced by:  s3cld  14814  s2cl  14820  s3co  14863  psgnunilem2  19409  efglem  19630  efgtf  19636  efgtlen  19640  efginvrel2  19641  efgredleme  19657  efgredlemc  19659  efgcpbllemb  19669  frgpuplem  19686  frgpnabllem1  19787  1wlkdlem1  30116  wlk2v2elem1  30134  s2rnOLD  32915  cycpm2tr  33091  cycpm2cl  33092  cyc2fv1  33093  cyc2fv2  33094  cycpmco2  33105  cyc2fvx  33106  cyc3co2  33112  cyc3genpmlem  33123  cyc3genpm  33124  cyc3conja  33129  elrgspnsubrunlem1  33214  lmat22lem  33800  lmat22e11  33801  lmat22e12  33802  lmat22e21  33803  lmat22e22  33804  lmat22det  33805  fib0  34383  fib1  34384  fibp1  34385  gsumws3  44178  amgm2d  44180  amgmw2d  49786
  Copyright terms: Public domain W3C validator