| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s2cld | Structured version Visualization version GIF version | ||
| Description: A doubleton word is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| s2cld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| s2cld.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| s2cld | ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s2 14814 | . 2 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
| 2 | s2cld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 3 | 2 | s1cld 14568 | . 2 ⊢ (𝜑 → 〈“𝐴”〉 ∈ Word 𝑋) |
| 4 | s2cld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
| 5 | 1, 3, 4 | cats1cld 14821 | 1 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Word cword 14478 〈“cs1 14560 〈“cs2 14807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-s2 14814 |
| This theorem is referenced by: s3cld 14838 s2cl 14844 s3co 14887 psgnunilem2 19425 efglem 19646 efgtf 19652 efgtlen 19656 efginvrel2 19657 efgredleme 19673 efgredlemc 19675 efgcpbllemb 19685 frgpuplem 19702 frgpnabllem1 19803 1wlkdlem1 30066 wlk2v2elem1 30084 s2rnOLD 32865 cycpm2tr 33076 cycpm2cl 33077 cyc2fv1 33078 cyc2fv2 33079 cycpmco2 33090 cyc2fvx 33091 cyc3co2 33097 cyc3genpmlem 33108 cyc3genpm 33109 cyc3conja 33114 elrgspnsubrunlem1 33198 lmat22lem 33807 lmat22e11 33808 lmat22e12 33809 lmat22e21 33810 lmat22e22 33811 lmat22det 33812 fib0 34390 fib1 34391 fibp1 34392 gsumws3 44185 amgm2d 44187 amgmw2d 49793 |
| Copyright terms: Public domain | W3C validator |