MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumws2 Structured version   Visualization version   GIF version

Theorem gsumws2 18758
Description: Valuation of a pair in a monoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
gsumccat.b 𝐵 = (Base‘𝐺)
gsumccat.p + = (+g𝐺)
Assertion
Ref Expression
gsumws2 ((𝐺 ∈ Mnd ∧ 𝑆𝐵𝑇𝐵) → (𝐺 Σg ⟨“𝑆𝑇”⟩) = (𝑆 + 𝑇))

Proof of Theorem gsumws2
StepHypRef Expression
1 df-s2 14762 . . . 4 ⟨“𝑆𝑇”⟩ = (⟨“𝑆”⟩ ++ ⟨“𝑇”⟩)
21a1i 11 . . 3 ((𝐺 ∈ Mnd ∧ 𝑆𝐵𝑇𝐵) → ⟨“𝑆𝑇”⟩ = (⟨“𝑆”⟩ ++ ⟨“𝑇”⟩))
32oveq2d 7371 . 2 ((𝐺 ∈ Mnd ∧ 𝑆𝐵𝑇𝐵) → (𝐺 Σg ⟨“𝑆𝑇”⟩) = (𝐺 Σg (⟨“𝑆”⟩ ++ ⟨“𝑇”⟩)))
4 id 22 . . 3 (𝐺 ∈ Mnd → 𝐺 ∈ Mnd)
5 s1cl 14517 . . 3 (𝑆𝐵 → ⟨“𝑆”⟩ ∈ Word 𝐵)
6 s1cl 14517 . . 3 (𝑇𝐵 → ⟨“𝑇”⟩ ∈ Word 𝐵)
7 gsumccat.b . . . 4 𝐵 = (Base‘𝐺)
8 gsumccat.p . . . 4 + = (+g𝐺)
97, 8gsumccat 18757 . . 3 ((𝐺 ∈ Mnd ∧ ⟨“𝑆”⟩ ∈ Word 𝐵 ∧ ⟨“𝑇”⟩ ∈ Word 𝐵) → (𝐺 Σg (⟨“𝑆”⟩ ++ ⟨“𝑇”⟩)) = ((𝐺 Σg ⟨“𝑆”⟩) + (𝐺 Σg ⟨“𝑇”⟩)))
104, 5, 6, 9syl3an 1160 . 2 ((𝐺 ∈ Mnd ∧ 𝑆𝐵𝑇𝐵) → (𝐺 Σg (⟨“𝑆”⟩ ++ ⟨“𝑇”⟩)) = ((𝐺 Σg ⟨“𝑆”⟩) + (𝐺 Σg ⟨“𝑇”⟩)))
117gsumws1 18754 . . . 4 (𝑆𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆)
127gsumws1 18754 . . . 4 (𝑇𝐵 → (𝐺 Σg ⟨“𝑇”⟩) = 𝑇)
1311, 12oveqan12d 7374 . . 3 ((𝑆𝐵𝑇𝐵) → ((𝐺 Σg ⟨“𝑆”⟩) + (𝐺 Σg ⟨“𝑇”⟩)) = (𝑆 + 𝑇))
14133adant1 1130 . 2 ((𝐺 ∈ Mnd ∧ 𝑆𝐵𝑇𝐵) → ((𝐺 Σg ⟨“𝑆”⟩) + (𝐺 Σg ⟨“𝑇”⟩)) = (𝑆 + 𝑇))
153, 10, 143eqtrd 2772 1 ((𝐺 ∈ Mnd ∧ 𝑆𝐵𝑇𝐵) → (𝐺 Σg ⟨“𝑆𝑇”⟩) = (𝑆 + 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  Word cword 14427   ++ cconcat 14484  ⟨“cs1 14510  ⟨“cs2 14755  Basecbs 17127  +gcplusg 17168   Σg cgsu 17351  Mndcmnd 18650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-seq 13916  df-hash 14245  df-word 14428  df-concat 14485  df-s1 14511  df-s2 14762  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-0g 17352  df-gsum 17353  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700
This theorem is referenced by:  psgnunilem2  19415  frgpuplem  19692  cyc3genpmlem  33161  cyc3genpm  33162  elrgspnsubrunlem1  33257  gsumws3  44353  amgm2d  44355  amgmw2d  49965
  Copyright terms: Public domain W3C validator