Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumws2 | Structured version Visualization version GIF version |
Description: Valuation of a pair in a monoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
gsumccat.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumccat.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
gsumws2 | ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → (𝐺 Σg 〈“𝑆𝑇”〉) = (𝑆 + 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s2 14660 | . . . 4 ⊢ 〈“𝑆𝑇”〉 = (〈“𝑆”〉 ++ 〈“𝑇”〉) | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → 〈“𝑆𝑇”〉 = (〈“𝑆”〉 ++ 〈“𝑇”〉)) |
3 | 2 | oveq2d 7353 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → (𝐺 Σg 〈“𝑆𝑇”〉) = (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇”〉))) |
4 | id 22 | . . 3 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mnd) | |
5 | s1cl 14406 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 〈“𝑆”〉 ∈ Word 𝐵) | |
6 | s1cl 14406 | . . 3 ⊢ (𝑇 ∈ 𝐵 → 〈“𝑇”〉 ∈ Word 𝐵) | |
7 | gsumccat.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
8 | gsumccat.p | . . . 4 ⊢ + = (+g‘𝐺) | |
9 | 7, 8 | gsumccat 18576 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 〈“𝑆”〉 ∈ Word 𝐵 ∧ 〈“𝑇”〉 ∈ Word 𝐵) → (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇”〉)) = ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇”〉))) |
10 | 4, 5, 6, 9 | syl3an 1159 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇”〉)) = ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇”〉))) |
11 | 7 | gsumws1 18573 | . . . 4 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
12 | 7 | gsumws1 18573 | . . . 4 ⊢ (𝑇 ∈ 𝐵 → (𝐺 Σg 〈“𝑇”〉) = 𝑇) |
13 | 11, 12 | oveqan12d 7356 | . . 3 ⊢ ((𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇”〉)) = (𝑆 + 𝑇)) |
14 | 13 | 3adant1 1129 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇”〉)) = (𝑆 + 𝑇)) |
15 | 3, 10, 14 | 3eqtrd 2780 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → (𝐺 Σg 〈“𝑆𝑇”〉) = (𝑆 + 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6479 (class class class)co 7337 Word cword 14317 ++ cconcat 14373 〈“cs1 14399 〈“cs2 14653 Basecbs 17009 +gcplusg 17059 Σg cgsu 17248 Mndcmnd 18482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-fzo 13484 df-seq 13823 df-hash 14146 df-word 14318 df-concat 14374 df-s1 14400 df-s2 14660 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-0g 17249 df-gsum 17250 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 |
This theorem is referenced by: psgnunilem2 19199 frgpuplem 19473 cyc3genpmlem 31705 cyc3genpm 31706 gsumws3 42128 amgm2d 42130 amgmw2d 46859 |
Copyright terms: Public domain | W3C validator |