Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumws2 | Structured version Visualization version GIF version |
Description: Valuation of a pair in a monoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
gsumccat.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumccat.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
gsumws2 | ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → (𝐺 Σg 〈“𝑆𝑇”〉) = (𝑆 + 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s2 14489 | . . . 4 ⊢ 〈“𝑆𝑇”〉 = (〈“𝑆”〉 ++ 〈“𝑇”〉) | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → 〈“𝑆𝑇”〉 = (〈“𝑆”〉 ++ 〈“𝑇”〉)) |
3 | 2 | oveq2d 7271 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → (𝐺 Σg 〈“𝑆𝑇”〉) = (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇”〉))) |
4 | id 22 | . . 3 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mnd) | |
5 | s1cl 14235 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 〈“𝑆”〉 ∈ Word 𝐵) | |
6 | s1cl 14235 | . . 3 ⊢ (𝑇 ∈ 𝐵 → 〈“𝑇”〉 ∈ Word 𝐵) | |
7 | gsumccat.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
8 | gsumccat.p | . . . 4 ⊢ + = (+g‘𝐺) | |
9 | 7, 8 | gsumccat 18395 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 〈“𝑆”〉 ∈ Word 𝐵 ∧ 〈“𝑇”〉 ∈ Word 𝐵) → (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇”〉)) = ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇”〉))) |
10 | 4, 5, 6, 9 | syl3an 1158 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇”〉)) = ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇”〉))) |
11 | 7 | gsumws1 18391 | . . . 4 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
12 | 7 | gsumws1 18391 | . . . 4 ⊢ (𝑇 ∈ 𝐵 → (𝐺 Σg 〈“𝑇”〉) = 𝑇) |
13 | 11, 12 | oveqan12d 7274 | . . 3 ⊢ ((𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇”〉)) = (𝑆 + 𝑇)) |
14 | 13 | 3adant1 1128 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇”〉)) = (𝑆 + 𝑇)) |
15 | 3, 10, 14 | 3eqtrd 2782 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → (𝐺 Σg 〈“𝑆𝑇”〉) = (𝑆 + 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Word cword 14145 ++ cconcat 14201 〈“cs1 14228 〈“cs2 14482 Basecbs 16840 +gcplusg 16888 Σg cgsu 17068 Mndcmnd 18300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-gsum 17070 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 |
This theorem is referenced by: psgnunilem2 19018 frgpuplem 19293 cyc3genpmlem 31320 cyc3genpm 31321 gsumws3 41696 amgm2d 41698 amgmw2d 46394 |
Copyright terms: Public domain | W3C validator |