| Step | Hyp | Ref
| Expression |
| 1 | | frgpnabl.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝐼) |
| 2 | | 0ex 5282 |
. . . . . . . . 9
⊢ ∅
∈ V |
| 3 | 2 | prid1 4743 |
. . . . . . . 8
⊢ ∅
∈ {∅, 1o} |
| 4 | | df2o3 8493 |
. . . . . . . 8
⊢
2o = {∅, 1o} |
| 5 | 3, 4 | eleqtrri 2834 |
. . . . . . 7
⊢ ∅
∈ 2o |
| 6 | | opelxpi 5696 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) →
〈𝐴, ∅〉
∈ (𝐼 ×
2o)) |
| 7 | 1, 5, 6 | sylancl 586 |
. . . . . 6
⊢ (𝜑 → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) |
| 8 | | frgpnabl.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝐼) |
| 9 | | opelxpi 5696 |
. . . . . . 7
⊢ ((𝐵 ∈ 𝐼 ∧ ∅ ∈ 2o) →
〈𝐵, ∅〉
∈ (𝐼 ×
2o)) |
| 10 | 8, 5, 9 | sylancl 586 |
. . . . . 6
⊢ (𝜑 → 〈𝐵, ∅〉 ∈ (𝐼 × 2o)) |
| 11 | 7, 10 | s2cld 14895 |
. . . . 5
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ Word (𝐼 ×
2o)) |
| 12 | | frgpnabl.w |
. . . . . 6
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
| 13 | | frgpnabl.i |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 14 | | 2on 8499 |
. . . . . . . 8
⊢
2o ∈ On |
| 15 | | xpexg 7749 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) →
(𝐼 × 2o)
∈ V) |
| 16 | 13, 14, 15 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → (𝐼 × 2o) ∈
V) |
| 17 | | wrdexg 14547 |
. . . . . . 7
⊢ ((𝐼 × 2o) ∈ V
→ Word (𝐼 ×
2o) ∈ V) |
| 18 | | fvi 6960 |
. . . . . . 7
⊢ (Word
(𝐼 × 2o)
∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 ×
2o)) |
| 19 | 16, 17, 18 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word
(𝐼 ×
2o)) |
| 20 | 12, 19 | eqtrid 2783 |
. . . . 5
⊢ (𝜑 → 𝑊 = Word (𝐼 × 2o)) |
| 21 | 11, 20 | eleqtrrd 2838 |
. . . 4
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ 𝑊) |
| 22 | | 1n0 8505 |
. . . . . . 7
⊢
1o ≠ ∅ |
| 23 | | 2cn 12320 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℂ |
| 24 | 23 | addlidi 11428 |
. . . . . . . . . . . . 13
⊢ (0 + 2) =
2 |
| 25 | | s2len 14913 |
. . . . . . . . . . . . 13
⊢
(♯‘〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉) =
2 |
| 26 | 24, 25 | eqtr4i 2762 |
. . . . . . . . . . . 12
⊢ (0 + 2) =
(♯‘〈“〈𝐴, ∅〉〈𝐵,
∅〉”〉) |
| 27 | | frgpnabl.r |
. . . . . . . . . . . . . 14
⊢ ∼ = (
~FG ‘𝐼) |
| 28 | | frgpnabl.m |
. . . . . . . . . . . . . 14
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| 29 | | frgpnabl.t |
. . . . . . . . . . . . . 14
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| 30 | 12, 27, 28, 29 | efgtlen 19712 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘𝑥)) →
(♯‘〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉) =
((♯‘𝑥) +
2)) |
| 31 | 30 | adantll 714 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑊) ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘𝑥)) →
(♯‘〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉) =
((♯‘𝑥) +
2)) |
| 32 | 26, 31 | eqtrid 2783 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑊) ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘𝑥)) → (0 + 2) = ((♯‘𝑥) + 2)) |
| 33 | 32 | ex 412 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → (〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘𝑥) → (0 + 2) =
((♯‘𝑥) +
2))) |
| 34 | | 0cnd 11233 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → 0 ∈ ℂ) |
| 35 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → 𝑥 ∈ 𝑊) |
| 36 | 12 | efgrcl 19701 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
| 37 | 36 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝑊 → 𝑊 = Word (𝐼 × 2o)) |
| 38 | 37 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → 𝑊 = Word (𝐼 × 2o)) |
| 39 | 35, 38 | eleqtrd 2837 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → 𝑥 ∈ Word (𝐼 × 2o)) |
| 40 | | lencl 14556 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ Word (𝐼 × 2o) →
(♯‘𝑥) ∈
ℕ0) |
| 41 | 39, 40 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → (♯‘𝑥) ∈
ℕ0) |
| 42 | 41 | nn0cnd 12569 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → (♯‘𝑥) ∈ ℂ) |
| 43 | | 2cnd 12323 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → 2 ∈ ℂ) |
| 44 | 34, 42, 43 | addcan2d 11444 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → ((0 + 2) = ((♯‘𝑥) + 2) ↔ 0 =
(♯‘𝑥))) |
| 45 | 33, 44 | sylibd 239 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → (〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘𝑥) → 0 =
(♯‘𝑥))) |
| 46 | 12, 27, 28, 29 | efgtf 19708 |
. . . . . . . . . . . . . . . . . 18
⊢ (∅
∈ 𝑊 → ((𝑇‘∅) = (𝑎 ∈
(0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ∧ (𝑇‘∅):((0...(♯‘∅))
× (𝐼 ×
2o))⟶𝑊)) |
| 47 | 46 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ∅ ∈ 𝑊) → ((𝑇‘∅) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ∧ (𝑇‘∅):((0...(♯‘∅))
× (𝐼 ×
2o))⟶𝑊)) |
| 48 | 47 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ∅ ∈ 𝑊) → (𝑇‘∅) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
| 49 | 48 | rneqd 5923 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ∅ ∈ 𝑊) → ran (𝑇‘∅) = ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
| 50 | 49 | eleq2d 2821 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ∅ ∈ 𝑊) →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 ∈ ran (𝑇‘∅) ↔
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 ∈ ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)))) |
| 51 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈
(0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
| 52 | | ovex 7443 |
. . . . . . . . . . . . . . . 16
⊢ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) ∈
V |
| 53 | 51, 52 | elrnmpo 7548 |
. . . . . . . . . . . . . . 15
⊢
(〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑎 ∈
(0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ↔ ∃𝑎 ∈
(0...(♯‘∅))∃𝑏 ∈ (𝐼 ×
2o)〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 = (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
| 54 | | wrd0 14562 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∅
∈ Word (𝐼 ×
2o) |
| 55 | 54 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → ∅
∈ Word (𝐼 ×
2o)) |
| 56 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → 𝑏 ∈ (𝐼 × 2o)) |
| 57 | 28 | efgmf 19699 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 ×
2o) |
| 58 | 57 | ffvelcdmi 7078 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 ∈ (𝐼 × 2o) → (𝑀‘𝑏) ∈ (𝐼 × 2o)) |
| 59 | 56, 58 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → (𝑀‘𝑏) ∈ (𝐼 × 2o)) |
| 60 | 56, 59 | s2cld 14895 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) →
〈“𝑏(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o)) |
| 61 | | ccatidid 14613 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∅
++ ∅) = ∅ |
| 62 | 61 | oveq1i 7420 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((∅
++ ∅) ++ ∅) = (∅ ++ ∅) |
| 63 | 62, 61 | eqtr2i 2760 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∅ =
((∅ ++ ∅) ++ ∅) |
| 64 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → ∅ =
((∅ ++ ∅) ++ ∅)) |
| 65 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈
(0...(♯‘∅))) |
| 66 | | hash0 14390 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(♯‘∅) = 0 |
| 67 | 66 | oveq2i 7421 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(0...(♯‘∅)) = (0...0) |
| 68 | 65, 67 | eleqtrdi 2845 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈
(0...0)) |
| 69 | | elfz1eq 13557 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 ∈ (0...0) → 𝑎 = 0) |
| 70 | 68, 69 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → 𝑎 = 0) |
| 71 | 70, 66 | eqtr4di 2789 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → 𝑎 =
(♯‘∅)) |
| 72 | 66 | oveq2i 7421 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 + (♯‘∅)) =
(𝑎 + 0) |
| 73 | | 0cn 11232 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 0 ∈
ℂ |
| 74 | 70, 73 | eqeltrdi 2843 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈
ℂ) |
| 75 | 74 | addridd 11440 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → (𝑎 + 0) = 𝑎) |
| 76 | 72, 75 | eqtr2id 2784 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → 𝑎 = (𝑎 + (♯‘∅))) |
| 77 | 55, 55, 55, 60, 64, 71, 76 | splval2 14780 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) = ((∅ ++
〈“𝑏(𝑀‘𝑏)”〉) ++ ∅)) |
| 78 | | ccatlid 14609 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(〈“𝑏(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o) → (∅ ++
〈“𝑏(𝑀‘𝑏)”〉) = 〈“𝑏(𝑀‘𝑏)”〉) |
| 79 | 78 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(〈“𝑏(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o) → ((∅ ++
〈“𝑏(𝑀‘𝑏)”〉) ++ ∅) =
(〈“𝑏(𝑀‘𝑏)”〉 ++ ∅)) |
| 80 | | ccatrid 14610 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(〈“𝑏(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o) →
(〈“𝑏(𝑀‘𝑏)”〉 ++ ∅) =
〈“𝑏(𝑀‘𝑏)”〉) |
| 81 | 79, 80 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(〈“𝑏(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o) → ((∅ ++
〈“𝑏(𝑀‘𝑏)”〉) ++ ∅) =
〈“𝑏(𝑀‘𝑏)”〉) |
| 82 | 60, 81 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → ((∅
++ 〈“𝑏(𝑀‘𝑏)”〉) ++ ∅) =
〈“𝑏(𝑀‘𝑏)”〉) |
| 83 | 77, 82 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) = 〈“𝑏(𝑀‘𝑏)”〉) |
| 84 | 83 | eqeq2d 2747 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = (∅ splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) ↔
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉)) |
| 85 | 1 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → 𝐴 ∈ 𝐼) |
| 86 | | 1on 8497 |
. . . . . . . . . . . . . . . . . . . 20
⊢
1o ∈ On |
| 87 | 86 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → 1o ∈
On) |
| 88 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) →
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) |
| 89 | 88 | fveq1d 6883 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉‘1) = (〈“𝑏(𝑀‘𝑏)”〉‘1)) |
| 90 | | opex 5444 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
〈𝐵,
∅〉 ∈ V |
| 91 | | s2fv1 14912 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(〈𝐵,
∅〉 ∈ V → (〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉‘1) =
〈𝐵,
∅〉) |
| 92 | 90, 91 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉‘1) =
〈𝐵,
∅〉 |
| 93 | | fvex 6894 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀‘𝑏) ∈ V |
| 94 | | s2fv1 14912 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑀‘𝑏) ∈ V → (〈“𝑏(𝑀‘𝑏)”〉‘1) = (𝑀‘𝑏)) |
| 95 | 93, 94 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(〈“𝑏(𝑀‘𝑏)”〉‘1) = (𝑀‘𝑏) |
| 96 | 89, 92, 95 | 3eqtr3g 2794 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → 〈𝐵, ∅〉 = (𝑀‘𝑏)) |
| 97 | 88 | fveq1d 6883 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉‘0) = (〈“𝑏(𝑀‘𝑏)”〉‘0)) |
| 98 | | opex 5444 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
〈𝐴,
∅〉 ∈ V |
| 99 | | s2fv0 14911 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(〈𝐴,
∅〉 ∈ V → (〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉‘0) =
〈𝐴,
∅〉) |
| 100 | 98, 99 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉‘0) =
〈𝐴,
∅〉 |
| 101 | | s2fv0 14911 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 ∈ V →
(〈“𝑏(𝑀‘𝑏)”〉‘0) = 𝑏) |
| 102 | 101 | elv 3469 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(〈“𝑏(𝑀‘𝑏)”〉‘0) = 𝑏 |
| 103 | 97, 100, 102 | 3eqtr3g 2794 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → 〈𝐴, ∅〉 = 𝑏) |
| 104 | 103 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → (𝑀‘〈𝐴, ∅〉) = (𝑀‘𝑏)) |
| 105 | 28 | efgmval 19698 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) →
(𝐴𝑀∅) = 〈𝐴, (1o ∖
∅)〉) |
| 106 | 85, 5, 105 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → (𝐴𝑀∅) = 〈𝐴, (1o ∖
∅)〉) |
| 107 | | df-ov 7413 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴𝑀∅) = (𝑀‘〈𝐴, ∅〉) |
| 108 | | dif0 4358 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(1o ∖ ∅) = 1o |
| 109 | 108 | opeq2i 4858 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
〈𝐴,
(1o ∖ ∅)〉 = 〈𝐴, 1o〉 |
| 110 | 106, 107,
109 | 3eqtr3g 2794 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → (𝑀‘〈𝐴, ∅〉) = 〈𝐴, 1o〉) |
| 111 | 96, 104, 110 | 3eqtr2rd 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → 〈𝐴, 1o〉 =
〈𝐵,
∅〉) |
| 112 | | opthg 5457 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ 𝐼 ∧ 1o ∈ On) →
(〈𝐴,
1o〉 = 〈𝐵, ∅〉 ↔ (𝐴 = 𝐵 ∧ 1o =
∅))) |
| 113 | 112 | simplbda 499 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ 𝐼 ∧ 1o ∈ On) ∧
〈𝐴,
1o〉 = 〈𝐵, ∅〉) → 1o =
∅) |
| 114 | 85, 87, 111, 113 | syl21anc 837 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → 1o =
∅) |
| 115 | 114 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉 → 1o =
∅)) |
| 116 | 84, 115 | sylbid 240 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = (∅ splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) → 1o =
∅)) |
| 117 | 116 | rexlimdvva 3202 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ∅ ∈ 𝑊) → (∃𝑎 ∈
(0...(♯‘∅))∃𝑏 ∈ (𝐼 ×
2o)〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 = (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) → 1o =
∅)) |
| 118 | 53, 117 | biimtrid 242 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ∅ ∈ 𝑊) →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 ∈ ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) → 1o =
∅)) |
| 119 | 50, 118 | sylbid 240 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ∅ ∈ 𝑊) →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 ∈ ran (𝑇‘∅) → 1o =
∅)) |
| 120 | 119 | expimpd 453 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((∅ ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘∅)) → 1o =
∅)) |
| 121 | | hasheq0 14386 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ V →
((♯‘𝑥) = 0
↔ 𝑥 =
∅)) |
| 122 | 121 | elv 3469 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑥) =
0 ↔ 𝑥 =
∅) |
| 123 | | eleq1 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑊 ↔ ∅ ∈ 𝑊)) |
| 124 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = ∅ → (𝑇‘𝑥) = (𝑇‘∅)) |
| 125 | 124 | rneqd 5923 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = ∅ → ran (𝑇‘𝑥) = ran (𝑇‘∅)) |
| 126 | 125 | eleq2d 2821 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = ∅ →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 ∈ ran (𝑇‘𝑥) ↔ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘∅))) |
| 127 | 123, 126 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = ∅ → ((𝑥 ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘𝑥)) ↔ (∅ ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘∅)))) |
| 128 | 122, 127 | sylbi 217 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑥) =
0 → ((𝑥 ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘𝑥)) ↔ (∅ ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘∅)))) |
| 129 | 128 | eqcoms 2744 |
. . . . . . . . . . . . 13
⊢ (0 =
(♯‘𝑥) →
((𝑥 ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘𝑥)) ↔ (∅ ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘∅)))) |
| 130 | 129 | imbi1d 341 |
. . . . . . . . . . . 12
⊢ (0 =
(♯‘𝑥) →
(((𝑥 ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘𝑥)) → 1o =
∅) ↔ ((∅ ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘∅)) →
1o = ∅))) |
| 131 | 120, 130 | syl5ibrcom 247 |
. . . . . . . . . . 11
⊢ (𝜑 → (0 = (♯‘𝑥) → ((𝑥 ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘𝑥)) → 1o =
∅))) |
| 132 | 131 | com23 86 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘𝑥)) → (0 = (♯‘𝑥) → 1o =
∅))) |
| 133 | 132 | expdimp 452 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → (〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘𝑥) → (0 =
(♯‘𝑥) →
1o = ∅))) |
| 134 | 45, 133 | mpdd 43 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → (〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘𝑥) → 1o =
∅)) |
| 135 | 134 | necon3ad 2946 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → (1o ≠ ∅ →
¬ 〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 ∈ ran (𝑇‘𝑥))) |
| 136 | 22, 135 | mpi 20 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → ¬ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘𝑥)) |
| 137 | 136 | nrexdv 3136 |
. . . . 5
⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝑊 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘𝑥)) |
| 138 | | eliun 4976 |
. . . . 5
⊢
(〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥) ↔ ∃𝑥 ∈ 𝑊 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘𝑥)) |
| 139 | 137, 138 | sylnibr 329 |
. . . 4
⊢ (𝜑 → ¬
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 ∈ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| 140 | 21, 139 | eldifd 3942 |
. . 3
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥))) |
| 141 | | frgpnabl.d |
. . 3
⊢ 𝐷 = (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| 142 | 140, 141 | eleqtrrdi 2846 |
. 2
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ 𝐷) |
| 143 | | df-s2 14872 |
. . . . 5
⊢
〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 =
(〈“〈𝐴,
∅〉”〉 ++ 〈“〈𝐵,
∅〉”〉) |
| 144 | 12, 27 | efger 19704 |
. . . . . . 7
⊢ ∼ Er
𝑊 |
| 145 | 144 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ∼ Er 𝑊) |
| 146 | 145, 21 | erref 8744 |
. . . . 5
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∼
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉) |
| 147 | 143, 146 | eqbrtrrid 5160 |
. . . 4
⊢ (𝜑 → (〈“〈𝐴, ∅〉”〉 ++
〈“〈𝐵,
∅〉”〉) ∼
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉) |
| 148 | 143 | ovexi 7444 |
. . . . 5
⊢
〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈
V |
| 149 | | ovex 7443 |
. . . . 5
⊢
(〈“〈𝐴, ∅〉”〉 ++
〈“〈𝐵,
∅〉”〉) ∈ V |
| 150 | 148, 149 | elec 8770 |
. . . 4
⊢
(〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈
[(〈“〈𝐴,
∅〉”〉 ++ 〈“〈𝐵, ∅〉”〉)] ∼ ↔
(〈“〈𝐴,
∅〉”〉 ++ 〈“〈𝐵, ∅〉”〉) ∼
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉) |
| 151 | 147, 150 | sylibr 234 |
. . 3
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ [(〈“〈𝐴, ∅〉”〉 ++
〈“〈𝐵,
∅〉”〉)] ∼ ) |
| 152 | | frgpnabl.u |
. . . . . . 7
⊢ 𝑈 =
(varFGrp‘𝐼) |
| 153 | 27, 152 | vrgpval 19753 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼
) |
| 154 | 13, 1, 153 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼
) |
| 155 | 27, 152 | vrgpval 19753 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐵 ∈ 𝐼) → (𝑈‘𝐵) = [〈“〈𝐵, ∅〉”〉] ∼
) |
| 156 | 13, 8, 155 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑈‘𝐵) = [〈“〈𝐵, ∅〉”〉] ∼
) |
| 157 | 154, 156 | oveq12d 7428 |
. . . 4
⊢ (𝜑 → ((𝑈‘𝐴) + (𝑈‘𝐵)) = ([〈“〈𝐴, ∅〉”〉] ∼ +
[〈“〈𝐵,
∅〉”〉] ∼ )) |
| 158 | 7 | s1cld 14626 |
. . . . . 6
⊢ (𝜑 → 〈“〈𝐴, ∅〉”〉
∈ Word (𝐼 ×
2o)) |
| 159 | 158, 20 | eleqtrrd 2838 |
. . . . 5
⊢ (𝜑 → 〈“〈𝐴, ∅〉”〉
∈ 𝑊) |
| 160 | 10 | s1cld 14626 |
. . . . . 6
⊢ (𝜑 → 〈“〈𝐵, ∅〉”〉
∈ Word (𝐼 ×
2o)) |
| 161 | 160, 20 | eleqtrrd 2838 |
. . . . 5
⊢ (𝜑 → 〈“〈𝐵, ∅〉”〉
∈ 𝑊) |
| 162 | | frgpnabl.g |
. . . . . 6
⊢ 𝐺 = (freeGrp‘𝐼) |
| 163 | | frgpnabl.p |
. . . . . 6
⊢ + =
(+g‘𝐺) |
| 164 | 12, 162, 27, 163 | frgpadd 19749 |
. . . . 5
⊢
((〈“〈𝐴, ∅〉”〉 ∈ 𝑊 ∧ 〈“〈𝐵, ∅〉”〉
∈ 𝑊) →
([〈“〈𝐴,
∅〉”〉] ∼ + [〈“〈𝐵, ∅〉”〉]
∼
) = [(〈“〈𝐴,
∅〉”〉 ++ 〈“〈𝐵, ∅〉”〉)] ∼
) |
| 165 | 159, 161,
164 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ([〈“〈𝐴, ∅〉”〉]
∼
+
[〈“〈𝐵,
∅〉”〉] ∼ ) =
[(〈“〈𝐴,
∅〉”〉 ++ 〈“〈𝐵, ∅〉”〉)] ∼
) |
| 166 | 157, 165 | eqtrd 2771 |
. . 3
⊢ (𝜑 → ((𝑈‘𝐴) + (𝑈‘𝐵)) = [(〈“〈𝐴, ∅〉”〉 ++
〈“〈𝐵,
∅〉”〉)] ∼ ) |
| 167 | 151, 166 | eleqtrrd 2838 |
. 2
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ((𝑈‘𝐴) + (𝑈‘𝐵))) |
| 168 | 142, 167 | elind 4180 |
1
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ (𝐷 ∩ ((𝑈‘𝐴) + (𝑈‘𝐵)))) |