MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpnabllem1 Structured version   Visualization version   GIF version

Theorem frgpnabllem1 19810
Description: Lemma for frgpnabl 19812. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 25-Apr-2024.)
Hypotheses
Ref Expression
frgpnabl.g 𝐺 = (freeGrp‘𝐼)
frgpnabl.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpnabl.r = ( ~FG𝐼)
frgpnabl.p + = (+g𝐺)
frgpnabl.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
frgpnabl.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
frgpnabl.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
frgpnabl.u 𝑈 = (varFGrp𝐼)
frgpnabl.i (𝜑𝐼𝑉)
frgpnabl.a (𝜑𝐴𝐼)
frgpnabl.b (𝜑𝐵𝐼)
Assertion
Ref Expression
frgpnabllem1 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ (𝐷 ∩ ((𝑈𝐴) + (𝑈𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑣,𝑛,𝑤,𝑥,𝑦,𝑧,𝐼   𝜑,𝑥   𝑥, ,𝑦,𝑧   𝑥,𝐵   𝑛,𝑊,𝑣,𝑤,𝑥,𝑦,𝑧   𝑥,𝐺   𝑛,𝑀,𝑣,𝑤,𝑥   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐵(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   + (𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   𝐺(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)

Proof of Theorem frgpnabllem1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpnabl.a . . . . . . 7 (𝜑𝐴𝐼)
2 0ex 5265 . . . . . . . . 9 ∅ ∈ V
32prid1 4729 . . . . . . . 8 ∅ ∈ {∅, 1o}
4 df2o3 8445 . . . . . . . 8 2o = {∅, 1o}
53, 4eleqtrri 2828 . . . . . . 7 ∅ ∈ 2o
6 opelxpi 5678 . . . . . . 7 ((𝐴𝐼 ∧ ∅ ∈ 2o) → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2o))
71, 5, 6sylancl 586 . . . . . 6 (𝜑 → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2o))
8 frgpnabl.b . . . . . . 7 (𝜑𝐵𝐼)
9 opelxpi 5678 . . . . . . 7 ((𝐵𝐼 ∧ ∅ ∈ 2o) → ⟨𝐵, ∅⟩ ∈ (𝐼 × 2o))
108, 5, 9sylancl 586 . . . . . 6 (𝜑 → ⟨𝐵, ∅⟩ ∈ (𝐼 × 2o))
117, 10s2cld 14844 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ Word (𝐼 × 2o))
12 frgpnabl.w . . . . . 6 𝑊 = ( I ‘Word (𝐼 × 2o))
13 frgpnabl.i . . . . . . . 8 (𝜑𝐼𝑉)
14 2on 8450 . . . . . . . 8 2o ∈ On
15 xpexg 7729 . . . . . . . 8 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
1613, 14, 15sylancl 586 . . . . . . 7 (𝜑 → (𝐼 × 2o) ∈ V)
17 wrdexg 14496 . . . . . . 7 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
18 fvi 6940 . . . . . . 7 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1916, 17, 183syl 18 . . . . . 6 (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
2012, 19eqtrid 2777 . . . . 5 (𝜑𝑊 = Word (𝐼 × 2o))
2111, 20eleqtrrd 2832 . . . 4 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝑊)
22 1n0 8455 . . . . . . 7 1o ≠ ∅
23 2cn 12268 . . . . . . . . . . . . . 14 2 ∈ ℂ
2423addlidi 11369 . . . . . . . . . . . . 13 (0 + 2) = 2
25 s2len 14862 . . . . . . . . . . . . 13 (♯‘⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩) = 2
2624, 25eqtr4i 2756 . . . . . . . . . . . 12 (0 + 2) = (♯‘⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩)
27 frgpnabl.r . . . . . . . . . . . . . 14 = ( ~FG𝐼)
28 frgpnabl.m . . . . . . . . . . . . . 14 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
29 frgpnabl.t . . . . . . . . . . . . . 14 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
3012, 27, 28, 29efgtlen 19663 . . . . . . . . . . . . 13 ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → (♯‘⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩) = ((♯‘𝑥) + 2))
3130adantll 714 . . . . . . . . . . . 12 (((𝜑𝑥𝑊) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → (♯‘⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩) = ((♯‘𝑥) + 2))
3226, 31eqtrid 2777 . . . . . . . . . . 11 (((𝜑𝑥𝑊) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → (0 + 2) = ((♯‘𝑥) + 2))
3332ex 412 . . . . . . . . . 10 ((𝜑𝑥𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥) → (0 + 2) = ((♯‘𝑥) + 2)))
34 0cnd 11174 . . . . . . . . . . 11 ((𝜑𝑥𝑊) → 0 ∈ ℂ)
35 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑊) → 𝑥𝑊)
3612efgrcl 19652 . . . . . . . . . . . . . . . 16 (𝑥𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
3736simprd 495 . . . . . . . . . . . . . . 15 (𝑥𝑊𝑊 = Word (𝐼 × 2o))
3837adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑊) → 𝑊 = Word (𝐼 × 2o))
3935, 38eleqtrd 2831 . . . . . . . . . . . . 13 ((𝜑𝑥𝑊) → 𝑥 ∈ Word (𝐼 × 2o))
40 lencl 14505 . . . . . . . . . . . . 13 (𝑥 ∈ Word (𝐼 × 2o) → (♯‘𝑥) ∈ ℕ0)
4139, 40syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝑊) → (♯‘𝑥) ∈ ℕ0)
4241nn0cnd 12512 . . . . . . . . . . 11 ((𝜑𝑥𝑊) → (♯‘𝑥) ∈ ℂ)
43 2cnd 12271 . . . . . . . . . . 11 ((𝜑𝑥𝑊) → 2 ∈ ℂ)
4434, 42, 43addcan2d 11385 . . . . . . . . . 10 ((𝜑𝑥𝑊) → ((0 + 2) = ((♯‘𝑥) + 2) ↔ 0 = (♯‘𝑥)))
4533, 44sylibd 239 . . . . . . . . 9 ((𝜑𝑥𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥) → 0 = (♯‘𝑥)))
4612, 27, 28, 29efgtf 19659 . . . . . . . . . . . . . . . . . 18 (∅ ∈ 𝑊 → ((𝑇‘∅) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇‘∅):((0...(♯‘∅)) × (𝐼 × 2o))⟶𝑊))
4746adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ∅ ∈ 𝑊) → ((𝑇‘∅) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇‘∅):((0...(♯‘∅)) × (𝐼 × 2o))⟶𝑊))
4847simpld 494 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∅ ∈ 𝑊) → (𝑇‘∅) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
4948rneqd 5905 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ∅ ∈ 𝑊) → ran (𝑇‘∅) = ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5049eleq2d 2815 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∅ ∈ 𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅) ↔ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))))
51 eqid 2730 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
52 ovex 7423 . . . . . . . . . . . . . . . 16 (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ V
5351, 52elrnmpo 7528 . . . . . . . . . . . . . . 15 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ↔ ∃𝑎 ∈ (0...(♯‘∅))∃𝑏 ∈ (𝐼 × 2o)⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
54 wrd0 14511 . . . . . . . . . . . . . . . . . . . . 21 ∅ ∈ Word (𝐼 × 2o)
5554a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → ∅ ∈ Word (𝐼 × 2o))
56 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑏 ∈ (𝐼 × 2o))
5728efgmf 19650 . . . . . . . . . . . . . . . . . . . . . . 23 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
5857ffvelcdmi 7058 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ∈ (𝐼 × 2o) → (𝑀𝑏) ∈ (𝐼 × 2o))
5956, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀𝑏) ∈ (𝐼 × 2o))
6056, 59s2cld 14844 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → ⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o))
61 ccatidid 14562 . . . . . . . . . . . . . . . . . . . . . . 23 (∅ ++ ∅) = ∅
6261oveq1i 7400 . . . . . . . . . . . . . . . . . . . . . 22 ((∅ ++ ∅) ++ ∅) = (∅ ++ ∅)
6362, 61eqtr2i 2754 . . . . . . . . . . . . . . . . . . . . 21 ∅ = ((∅ ++ ∅) ++ ∅)
6463a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → ∅ = ((∅ ++ ∅) ++ ∅))
65 simprl 770 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ (0...(♯‘∅)))
66 hash0 14339 . . . . . . . . . . . . . . . . . . . . . . . 24 (♯‘∅) = 0
6766oveq2i 7401 . . . . . . . . . . . . . . . . . . . . . . 23 (0...(♯‘∅)) = (0...0)
6865, 67eleqtrdi 2839 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ (0...0))
69 elfz1eq 13503 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ (0...0) → 𝑎 = 0)
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 = 0)
7170, 66eqtr4di 2783 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 = (♯‘∅))
7266oveq2i 7401 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 + (♯‘∅)) = (𝑎 + 0)
73 0cn 11173 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℂ
7470, 73eqeltrdi 2837 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ ℂ)
7574addridd 11381 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 + 0) = 𝑎)
7672, 75eqtr2id 2778 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 = (𝑎 + (♯‘∅)))
7755, 55, 55, 60, 64, 71, 76splval2 14729 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) = ((∅ ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ ∅))
78 ccatlid 14558 . . . . . . . . . . . . . . . . . . . . . 22 (⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o) → (∅ ++ ⟨“𝑏(𝑀𝑏)”⟩) = ⟨“𝑏(𝑀𝑏)”⟩)
7978oveq1d 7405 . . . . . . . . . . . . . . . . . . . . 21 (⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o) → ((∅ ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ ∅) = (⟨“𝑏(𝑀𝑏)”⟩ ++ ∅))
80 ccatrid 14559 . . . . . . . . . . . . . . . . . . . . 21 (⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o) → (⟨“𝑏(𝑀𝑏)”⟩ ++ ∅) = ⟨“𝑏(𝑀𝑏)”⟩)
8179, 80eqtrd 2765 . . . . . . . . . . . . . . . . . . . 20 (⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o) → ((∅ ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ ∅) = ⟨“𝑏(𝑀𝑏)”⟩)
8260, 81syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((∅ ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ ∅) = ⟨“𝑏(𝑀𝑏)”⟩)
8377, 82eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) = ⟨“𝑏(𝑀𝑏)”⟩)
8483eqeq2d 2741 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ↔ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩))
851ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → 𝐴𝐼)
86 1on 8449 . . . . . . . . . . . . . . . . . . . 20 1o ∈ On
8786a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → 1o ∈ On)
88 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩)
8988fveq1d 6863 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘1) = (⟨“𝑏(𝑀𝑏)”⟩‘1))
90 opex 5427 . . . . . . . . . . . . . . . . . . . . . 22 𝐵, ∅⟩ ∈ V
91 s2fv1 14861 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝐵, ∅⟩ ∈ V → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘1) = ⟨𝐵, ∅⟩)
9290, 91ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘1) = ⟨𝐵, ∅⟩
93 fvex 6874 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀𝑏) ∈ V
94 s2fv1 14861 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀𝑏) ∈ V → (⟨“𝑏(𝑀𝑏)”⟩‘1) = (𝑀𝑏))
9593, 94ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (⟨“𝑏(𝑀𝑏)”⟩‘1) = (𝑀𝑏)
9689, 92, 953eqtr3g 2788 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → ⟨𝐵, ∅⟩ = (𝑀𝑏))
9788fveq1d 6863 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = (⟨“𝑏(𝑀𝑏)”⟩‘0))
98 opex 5427 . . . . . . . . . . . . . . . . . . . . . . 23 𝐴, ∅⟩ ∈ V
99 s2fv0 14860 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝐴, ∅⟩ ∈ V → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = ⟨𝐴, ∅⟩)
10098, 99ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = ⟨𝐴, ∅⟩
101 s2fv0 14860 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ V → (⟨“𝑏(𝑀𝑏)”⟩‘0) = 𝑏)
102101elv 3455 . . . . . . . . . . . . . . . . . . . . . 22 (⟨“𝑏(𝑀𝑏)”⟩‘0) = 𝑏
10397, 100, 1023eqtr3g 2788 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → ⟨𝐴, ∅⟩ = 𝑏)
104103fveq2d 6865 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → (𝑀‘⟨𝐴, ∅⟩) = (𝑀𝑏))
10528efgmval 19649 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝐼 ∧ ∅ ∈ 2o) → (𝐴𝑀∅) = ⟨𝐴, (1o ∖ ∅)⟩)
10685, 5, 105sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → (𝐴𝑀∅) = ⟨𝐴, (1o ∖ ∅)⟩)
107 df-ov 7393 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝑀∅) = (𝑀‘⟨𝐴, ∅⟩)
108 dif0 4344 . . . . . . . . . . . . . . . . . . . . . 22 (1o ∖ ∅) = 1o
109108opeq2i 4844 . . . . . . . . . . . . . . . . . . . . 21 𝐴, (1o ∖ ∅)⟩ = ⟨𝐴, 1o
110106, 107, 1093eqtr3g 2788 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → (𝑀‘⟨𝐴, ∅⟩) = ⟨𝐴, 1o⟩)
11196, 104, 1103eqtr2rd 2772 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → ⟨𝐴, 1o⟩ = ⟨𝐵, ∅⟩)
112 opthg 5440 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝐼 ∧ 1o ∈ On) → (⟨𝐴, 1o⟩ = ⟨𝐵, ∅⟩ ↔ (𝐴 = 𝐵 ∧ 1o = ∅)))
113112simplbda 499 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐼 ∧ 1o ∈ On) ∧ ⟨𝐴, 1o⟩ = ⟨𝐵, ∅⟩) → 1o = ∅)
11485, 87, 111, 113syl21anc 837 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → 1o = ∅)
115114ex 412 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩ → 1o = ∅))
11684, 115sylbid 240 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) → 1o = ∅))
117116rexlimdvva 3195 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ∅ ∈ 𝑊) → (∃𝑎 ∈ (0...(♯‘∅))∃𝑏 ∈ (𝐼 × 2o)⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) → 1o = ∅))
11853, 117biimtrid 242 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∅ ∈ 𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) → 1o = ∅))
11950, 118sylbid 240 . . . . . . . . . . . . 13 ((𝜑 ∧ ∅ ∈ 𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅) → 1o = ∅))
120119expimpd 453 . . . . . . . . . . . 12 (𝜑 → ((∅ ∈ 𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅)) → 1o = ∅))
121 hasheq0 14335 . . . . . . . . . . . . . . . 16 (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
122121elv 3455 . . . . . . . . . . . . . . 15 ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)
123 eleq1 2817 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (𝑥𝑊 ↔ ∅ ∈ 𝑊))
124 fveq2 6861 . . . . . . . . . . . . . . . . . 18 (𝑥 = ∅ → (𝑇𝑥) = (𝑇‘∅))
125124rneqd 5905 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → ran (𝑇𝑥) = ran (𝑇‘∅))
126125eleq2d 2815 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥) ↔ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅)))
127123, 126anbi12d 632 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) ↔ (∅ ∈ 𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅))))
128122, 127sylbi 217 . . . . . . . . . . . . . 14 ((♯‘𝑥) = 0 → ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) ↔ (∅ ∈ 𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅))))
129128eqcoms 2738 . . . . . . . . . . . . 13 (0 = (♯‘𝑥) → ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) ↔ (∅ ∈ 𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅))))
130129imbi1d 341 . . . . . . . . . . . 12 (0 = (♯‘𝑥) → (((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → 1o = ∅) ↔ ((∅ ∈ 𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅)) → 1o = ∅)))
131120, 130syl5ibrcom 247 . . . . . . . . . . 11 (𝜑 → (0 = (♯‘𝑥) → ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → 1o = ∅)))
132131com23 86 . . . . . . . . . 10 (𝜑 → ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → (0 = (♯‘𝑥) → 1o = ∅)))
133132expdimp 452 . . . . . . . . 9 ((𝜑𝑥𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥) → (0 = (♯‘𝑥) → 1o = ∅)))
13445, 133mpdd 43 . . . . . . . 8 ((𝜑𝑥𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥) → 1o = ∅))
135134necon3ad 2939 . . . . . . 7 ((𝜑𝑥𝑊) → (1o ≠ ∅ → ¬ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)))
13622, 135mpi 20 . . . . . 6 ((𝜑𝑥𝑊) → ¬ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥))
137136nrexdv 3129 . . . . 5 (𝜑 → ¬ ∃𝑥𝑊 ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥))
138 eliun 4962 . . . . 5 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝑥𝑊 ran (𝑇𝑥) ↔ ∃𝑥𝑊 ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥))
139137, 138sylnibr 329 . . . 4 (𝜑 → ¬ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝑥𝑊 ran (𝑇𝑥))
14021, 139eldifd 3928 . . 3 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)))
141 frgpnabl.d . . 3 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
142140, 141eleqtrrdi 2840 . 2 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝐷)
143 df-s2 14821 . . . . 5 ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = (⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)
14412, 27efger 19655 . . . . . . 7 Er 𝑊
145144a1i 11 . . . . . 6 (𝜑 Er 𝑊)
146145, 21erref 8694 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩)
147143, 146eqbrtrrid 5146 . . . 4 (𝜑 → (⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩) ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩)
148143ovexi 7424 . . . . 5 ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ V
149 ovex 7423 . . . . 5 (⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩) ∈ V
150148, 149elec 8720 . . . 4 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ [(⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)] ↔ (⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩) ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩)
151147, 150sylibr 234 . . 3 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ [(⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)] )
152 frgpnabl.u . . . . . . 7 𝑈 = (varFGrp𝐼)
15327, 152vrgpval 19704 . . . . . 6 ((𝐼𝑉𝐴𝐼) → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
15413, 1, 153syl2anc 584 . . . . 5 (𝜑 → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
15527, 152vrgpval 19704 . . . . . 6 ((𝐼𝑉𝐵𝐼) → (𝑈𝐵) = [⟨“⟨𝐵, ∅⟩”⟩] )
15613, 8, 155syl2anc 584 . . . . 5 (𝜑 → (𝑈𝐵) = [⟨“⟨𝐵, ∅⟩”⟩] )
157154, 156oveq12d 7408 . . . 4 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = ([⟨“⟨𝐴, ∅⟩”⟩] + [⟨“⟨𝐵, ∅⟩”⟩] ))
1587s1cld 14575 . . . . . 6 (𝜑 → ⟨“⟨𝐴, ∅⟩”⟩ ∈ Word (𝐼 × 2o))
159158, 20eleqtrrd 2832 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩”⟩ ∈ 𝑊)
16010s1cld 14575 . . . . . 6 (𝜑 → ⟨“⟨𝐵, ∅⟩”⟩ ∈ Word (𝐼 × 2o))
161160, 20eleqtrrd 2832 . . . . 5 (𝜑 → ⟨“⟨𝐵, ∅⟩”⟩ ∈ 𝑊)
162 frgpnabl.g . . . . . 6 𝐺 = (freeGrp‘𝐼)
163 frgpnabl.p . . . . . 6 + = (+g𝐺)
16412, 162, 27, 163frgpadd 19700 . . . . 5 ((⟨“⟨𝐴, ∅⟩”⟩ ∈ 𝑊 ∧ ⟨“⟨𝐵, ∅⟩”⟩ ∈ 𝑊) → ([⟨“⟨𝐴, ∅⟩”⟩] + [⟨“⟨𝐵, ∅⟩”⟩] ) = [(⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)] )
165159, 161, 164syl2anc 584 . . . 4 (𝜑 → ([⟨“⟨𝐴, ∅⟩”⟩] + [⟨“⟨𝐵, ∅⟩”⟩] ) = [(⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)] )
166157, 165eqtrd 2765 . . 3 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = [(⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)] )
167151, 166eleqtrrd 2832 . 2 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵)))
168142, 167elind 4166 1 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ (𝐷 ∩ ((𝑈𝐴) + (𝑈𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  cdif 3914  cin 3916  c0 4299  {cpr 4594  cop 4598  cotp 4600   ciun 4958   class class class wbr 5110  cmpt 5191   I cid 5535   × cxp 5639  ran crn 5642  Oncon0 6335  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  1oc1o 8430  2oc2o 8431   Er wer 8671  [cec 8672  cc 11073  0cc0 11075  1c1 11076   + caddc 11078  2c2 12248  0cn0 12449  ...cfz 13475  chash 14302  Word cword 14485   ++ cconcat 14542  ⟨“cs1 14567   splice csplice 14721  ⟨“cs2 14814  +gcplusg 17227   ~FG cefg 19643  freeGrpcfrgp 19644  varFGrpcvrgp 19645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-splice 14722  df-s2 14821  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-frmd 18783  df-efg 19646  df-frgp 19647  df-vrgp 19648
This theorem is referenced by:  frgpnabllem2  19811
  Copyright terms: Public domain W3C validator