Step | Hyp | Ref
| Expression |
1 | | frgpnabl.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝐼) |
2 | | 0ex 5231 |
. . . . . . . . 9
⊢ ∅
∈ V |
3 | 2 | prid1 4698 |
. . . . . . . 8
⊢ ∅
∈ {∅, 1o} |
4 | | df2o3 8305 |
. . . . . . . 8
⊢
2o = {∅, 1o} |
5 | 3, 4 | eleqtrri 2838 |
. . . . . . 7
⊢ ∅
∈ 2o |
6 | | opelxpi 5626 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) →
〈𝐴, ∅〉
∈ (𝐼 ×
2o)) |
7 | 1, 5, 6 | sylancl 586 |
. . . . . 6
⊢ (𝜑 → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) |
8 | | frgpnabl.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝐼) |
9 | | opelxpi 5626 |
. . . . . . 7
⊢ ((𝐵 ∈ 𝐼 ∧ ∅ ∈ 2o) →
〈𝐵, ∅〉
∈ (𝐼 ×
2o)) |
10 | 8, 5, 9 | sylancl 586 |
. . . . . 6
⊢ (𝜑 → 〈𝐵, ∅〉 ∈ (𝐼 × 2o)) |
11 | 7, 10 | s2cld 14584 |
. . . . 5
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ Word (𝐼 ×
2o)) |
12 | | frgpnabl.w |
. . . . . 6
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
13 | | frgpnabl.i |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
14 | | 2on 8311 |
. . . . . . . 8
⊢
2o ∈ On |
15 | | xpexg 7600 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) →
(𝐼 × 2o)
∈ V) |
16 | 13, 14, 15 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → (𝐼 × 2o) ∈
V) |
17 | | wrdexg 14227 |
. . . . . . 7
⊢ ((𝐼 × 2o) ∈ V
→ Word (𝐼 ×
2o) ∈ V) |
18 | | fvi 6844 |
. . . . . . 7
⊢ (Word
(𝐼 × 2o)
∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 ×
2o)) |
19 | 16, 17, 18 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word
(𝐼 ×
2o)) |
20 | 12, 19 | eqtrid 2790 |
. . . . 5
⊢ (𝜑 → 𝑊 = Word (𝐼 × 2o)) |
21 | 11, 20 | eleqtrrd 2842 |
. . . 4
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ 𝑊) |
22 | | 1n0 8318 |
. . . . . . 7
⊢
1o ≠ ∅ |
23 | | 2cn 12048 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℂ |
24 | 23 | addid2i 11163 |
. . . . . . . . . . . . 13
⊢ (0 + 2) =
2 |
25 | | s2len 14602 |
. . . . . . . . . . . . 13
⊢
(♯‘〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉) =
2 |
26 | 24, 25 | eqtr4i 2769 |
. . . . . . . . . . . 12
⊢ (0 + 2) =
(♯‘〈“〈𝐴, ∅〉〈𝐵,
∅〉”〉) |
27 | | frgpnabl.r |
. . . . . . . . . . . . . 14
⊢ ∼ = (
~FG ‘𝐼) |
28 | | frgpnabl.m |
. . . . . . . . . . . . . 14
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
29 | | frgpnabl.t |
. . . . . . . . . . . . . 14
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
30 | 12, 27, 28, 29 | efgtlen 19332 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘𝑥)) →
(♯‘〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉) =
((♯‘𝑥) +
2)) |
31 | 30 | adantll 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑊) ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘𝑥)) →
(♯‘〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉) =
((♯‘𝑥) +
2)) |
32 | 26, 31 | eqtrid 2790 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑊) ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘𝑥)) → (0 + 2) = ((♯‘𝑥) + 2)) |
33 | 32 | ex 413 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → (〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘𝑥) → (0 + 2) =
((♯‘𝑥) +
2))) |
34 | | 0cnd 10968 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → 0 ∈ ℂ) |
35 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → 𝑥 ∈ 𝑊) |
36 | 12 | efgrcl 19321 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
37 | 36 | simprd 496 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝑊 → 𝑊 = Word (𝐼 × 2o)) |
38 | 37 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → 𝑊 = Word (𝐼 × 2o)) |
39 | 35, 38 | eleqtrd 2841 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → 𝑥 ∈ Word (𝐼 × 2o)) |
40 | | lencl 14236 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ Word (𝐼 × 2o) →
(♯‘𝑥) ∈
ℕ0) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → (♯‘𝑥) ∈
ℕ0) |
42 | 41 | nn0cnd 12295 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → (♯‘𝑥) ∈ ℂ) |
43 | | 2cnd 12051 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → 2 ∈ ℂ) |
44 | 34, 42, 43 | addcan2d 11179 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → ((0 + 2) = ((♯‘𝑥) + 2) ↔ 0 =
(♯‘𝑥))) |
45 | 33, 44 | sylibd 238 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → (〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘𝑥) → 0 =
(♯‘𝑥))) |
46 | 12, 27, 28, 29 | efgtf 19328 |
. . . . . . . . . . . . . . . . . 18
⊢ (∅
∈ 𝑊 → ((𝑇‘∅) = (𝑎 ∈
(0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ∧ (𝑇‘∅):((0...(♯‘∅))
× (𝐼 ×
2o))⟶𝑊)) |
47 | 46 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ∅ ∈ 𝑊) → ((𝑇‘∅) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ∧ (𝑇‘∅):((0...(♯‘∅))
× (𝐼 ×
2o))⟶𝑊)) |
48 | 47 | simpld 495 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ∅ ∈ 𝑊) → (𝑇‘∅) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
49 | 48 | rneqd 5847 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ∅ ∈ 𝑊) → ran (𝑇‘∅) = ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
50 | 49 | eleq2d 2824 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ∅ ∈ 𝑊) →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 ∈ ran (𝑇‘∅) ↔
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 ∈ ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)))) |
51 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈
(0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
52 | | ovex 7308 |
. . . . . . . . . . . . . . . 16
⊢ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) ∈
V |
53 | 51, 52 | elrnmpo 7410 |
. . . . . . . . . . . . . . 15
⊢
(〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑎 ∈
(0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ↔ ∃𝑎 ∈
(0...(♯‘∅))∃𝑏 ∈ (𝐼 ×
2o)〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 = (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
54 | | wrd0 14242 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∅
∈ Word (𝐼 ×
2o) |
55 | 54 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → ∅
∈ Word (𝐼 ×
2o)) |
56 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → 𝑏 ∈ (𝐼 × 2o)) |
57 | 28 | efgmf 19319 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 ×
2o) |
58 | 57 | ffvelrni 6960 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 ∈ (𝐼 × 2o) → (𝑀‘𝑏) ∈ (𝐼 × 2o)) |
59 | 56, 58 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → (𝑀‘𝑏) ∈ (𝐼 × 2o)) |
60 | 56, 59 | s2cld 14584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) →
〈“𝑏(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o)) |
61 | | ccatidid 14295 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∅
++ ∅) = ∅ |
62 | 61 | oveq1i 7285 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((∅
++ ∅) ++ ∅) = (∅ ++ ∅) |
63 | 62, 61 | eqtr2i 2767 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∅ =
((∅ ++ ∅) ++ ∅) |
64 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → ∅ =
((∅ ++ ∅) ++ ∅)) |
65 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈
(0...(♯‘∅))) |
66 | | hash0 14082 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(♯‘∅) = 0 |
67 | 66 | oveq2i 7286 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(0...(♯‘∅)) = (0...0) |
68 | 65, 67 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈
(0...0)) |
69 | | elfz1eq 13267 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 ∈ (0...0) → 𝑎 = 0) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → 𝑎 = 0) |
71 | 70, 66 | eqtr4di 2796 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → 𝑎 =
(♯‘∅)) |
72 | 66 | oveq2i 7286 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 + (♯‘∅)) =
(𝑎 + 0) |
73 | | 0cn 10967 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 0 ∈
ℂ |
74 | 70, 73 | eqeltrdi 2847 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈
ℂ) |
75 | 74 | addid1d 11175 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → (𝑎 + 0) = 𝑎) |
76 | 72, 75 | eqtr2id 2791 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → 𝑎 = (𝑎 + (♯‘∅))) |
77 | 55, 55, 55, 60, 64, 71, 76 | splval2 14470 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) = ((∅ ++
〈“𝑏(𝑀‘𝑏)”〉) ++ ∅)) |
78 | | ccatlid 14291 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(〈“𝑏(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o) → (∅ ++
〈“𝑏(𝑀‘𝑏)”〉) = 〈“𝑏(𝑀‘𝑏)”〉) |
79 | 78 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(〈“𝑏(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o) → ((∅ ++
〈“𝑏(𝑀‘𝑏)”〉) ++ ∅) =
(〈“𝑏(𝑀‘𝑏)”〉 ++ ∅)) |
80 | | ccatrid 14292 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(〈“𝑏(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o) →
(〈“𝑏(𝑀‘𝑏)”〉 ++ ∅) =
〈“𝑏(𝑀‘𝑏)”〉) |
81 | 79, 80 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(〈“𝑏(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o) → ((∅ ++
〈“𝑏(𝑀‘𝑏)”〉) ++ ∅) =
〈“𝑏(𝑀‘𝑏)”〉) |
82 | 60, 81 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → ((∅
++ 〈“𝑏(𝑀‘𝑏)”〉) ++ ∅) =
〈“𝑏(𝑀‘𝑏)”〉) |
83 | 77, 82 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) → (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) = 〈“𝑏(𝑀‘𝑏)”〉) |
84 | 83 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = (∅ splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) ↔
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉)) |
85 | 1 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → 𝐴 ∈ 𝐼) |
86 | | 1on 8309 |
. . . . . . . . . . . . . . . . . . . 20
⊢
1o ∈ On |
87 | 86 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → 1o ∈
On) |
88 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) →
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) |
89 | 88 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉‘1) = (〈“𝑏(𝑀‘𝑏)”〉‘1)) |
90 | | opex 5379 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
〈𝐵,
∅〉 ∈ V |
91 | | s2fv1 14601 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(〈𝐵,
∅〉 ∈ V → (〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉‘1) =
〈𝐵,
∅〉) |
92 | 90, 91 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉‘1) =
〈𝐵,
∅〉 |
93 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀‘𝑏) ∈ V |
94 | | s2fv1 14601 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑀‘𝑏) ∈ V → (〈“𝑏(𝑀‘𝑏)”〉‘1) = (𝑀‘𝑏)) |
95 | 93, 94 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(〈“𝑏(𝑀‘𝑏)”〉‘1) = (𝑀‘𝑏) |
96 | 89, 92, 95 | 3eqtr3g 2801 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → 〈𝐵, ∅〉 = (𝑀‘𝑏)) |
97 | 88 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉‘0) = (〈“𝑏(𝑀‘𝑏)”〉‘0)) |
98 | | opex 5379 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
〈𝐴,
∅〉 ∈ V |
99 | | s2fv0 14600 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(〈𝐴,
∅〉 ∈ V → (〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉‘0) =
〈𝐴,
∅〉) |
100 | 98, 99 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉‘0) =
〈𝐴,
∅〉 |
101 | | s2fv0 14600 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 ∈ V →
(〈“𝑏(𝑀‘𝑏)”〉‘0) = 𝑏) |
102 | 101 | elv 3438 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(〈“𝑏(𝑀‘𝑏)”〉‘0) = 𝑏 |
103 | 97, 100, 102 | 3eqtr3g 2801 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → 〈𝐴, ∅〉 = 𝑏) |
104 | 103 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → (𝑀‘〈𝐴, ∅〉) = (𝑀‘𝑏)) |
105 | 28 | efgmval 19318 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) →
(𝐴𝑀∅) = 〈𝐴, (1o ∖
∅)〉) |
106 | 85, 5, 105 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → (𝐴𝑀∅) = 〈𝐴, (1o ∖
∅)〉) |
107 | | df-ov 7278 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴𝑀∅) = (𝑀‘〈𝐴, ∅〉) |
108 | | dif0 4306 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(1o ∖ ∅) = 1o |
109 | 108 | opeq2i 4808 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
〈𝐴,
(1o ∖ ∅)〉 = 〈𝐴, 1o〉 |
110 | 106, 107,
109 | 3eqtr3g 2801 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → (𝑀‘〈𝐴, ∅〉) = 〈𝐴, 1o〉) |
111 | 96, 104, 110 | 3eqtr2rd 2785 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → 〈𝐴, 1o〉 =
〈𝐵,
∅〉) |
112 | | opthg 5392 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ 𝐼 ∧ 1o ∈ On) →
(〈𝐴,
1o〉 = 〈𝐵, ∅〉 ↔ (𝐴 = 𝐵 ∧ 1o =
∅))) |
113 | 112 | simplbda 500 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ 𝐼 ∧ 1o ∈ On) ∧
〈𝐴,
1o〉 = 〈𝐵, ∅〉) → 1o =
∅) |
114 | 85, 87, 111, 113 | syl21anc 835 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) ∧
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉) → 1o =
∅) |
115 | 114 | ex 413 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = 〈“𝑏(𝑀‘𝑏)”〉 → 1o =
∅)) |
116 | 84, 115 | sylbid 239 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧
𝑏 ∈ (𝐼 × 2o))) →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 = (∅ splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) → 1o =
∅)) |
117 | 116 | rexlimdvva 3223 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ∅ ∈ 𝑊) → (∃𝑎 ∈
(0...(♯‘∅))∃𝑏 ∈ (𝐼 ×
2o)〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 = (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) → 1o =
∅)) |
118 | 53, 117 | syl5bi 241 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ∅ ∈ 𝑊) →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 ∈ ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) → 1o =
∅)) |
119 | 50, 118 | sylbid 239 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ∅ ∈ 𝑊) →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 ∈ ran (𝑇‘∅) → 1o =
∅)) |
120 | 119 | expimpd 454 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((∅ ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘∅)) → 1o =
∅)) |
121 | | hasheq0 14078 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ V →
((♯‘𝑥) = 0
↔ 𝑥 =
∅)) |
122 | 121 | elv 3438 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑥) =
0 ↔ 𝑥 =
∅) |
123 | | eleq1 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑊 ↔ ∅ ∈ 𝑊)) |
124 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = ∅ → (𝑇‘𝑥) = (𝑇‘∅)) |
125 | 124 | rneqd 5847 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = ∅ → ran (𝑇‘𝑥) = ran (𝑇‘∅)) |
126 | 125 | eleq2d 2824 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = ∅ →
(〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 ∈ ran (𝑇‘𝑥) ↔ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘∅))) |
127 | 123, 126 | anbi12d 631 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = ∅ → ((𝑥 ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘𝑥)) ↔ (∅ ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘∅)))) |
128 | 122, 127 | sylbi 216 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑥) =
0 → ((𝑥 ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘𝑥)) ↔ (∅ ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘∅)))) |
129 | 128 | eqcoms 2746 |
. . . . . . . . . . . . 13
⊢ (0 =
(♯‘𝑥) →
((𝑥 ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘𝑥)) ↔ (∅ ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘∅)))) |
130 | 129 | imbi1d 342 |
. . . . . . . . . . . 12
⊢ (0 =
(♯‘𝑥) →
(((𝑥 ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘𝑥)) → 1o =
∅) ↔ ((∅ ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘∅)) →
1o = ∅))) |
131 | 120, 130 | syl5ibrcom 246 |
. . . . . . . . . . 11
⊢ (𝜑 → (0 = (♯‘𝑥) → ((𝑥 ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘𝑥)) → 1o =
∅))) |
132 | 131 | com23 86 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ 𝑊 ∧ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘𝑥)) → (0 = (♯‘𝑥) → 1o =
∅))) |
133 | 132 | expdimp 453 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → (〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘𝑥) → (0 =
(♯‘𝑥) →
1o = ∅))) |
134 | 45, 133 | mpdd 43 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → (〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘𝑥) → 1o =
∅)) |
135 | 134 | necon3ad 2956 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → (1o ≠ ∅ →
¬ 〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 ∈ ran (𝑇‘𝑥))) |
136 | 22, 135 | mpi 20 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑊) → ¬ 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ran (𝑇‘𝑥)) |
137 | 136 | nrexdv 3198 |
. . . . 5
⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝑊 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘𝑥)) |
138 | | eliun 4928 |
. . . . 5
⊢
(〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥) ↔ ∃𝑥 ∈ 𝑊 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ ran
(𝑇‘𝑥)) |
139 | 137, 138 | sylnibr 329 |
. . . 4
⊢ (𝜑 → ¬
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉 ∈ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
140 | 21, 139 | eldifd 3898 |
. . 3
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥))) |
141 | | frgpnabl.d |
. . 3
⊢ 𝐷 = (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
142 | 140, 141 | eleqtrrdi 2850 |
. 2
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ 𝐷) |
143 | | df-s2 14561 |
. . . . 5
⊢
〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 =
(〈“〈𝐴,
∅〉”〉 ++ 〈“〈𝐵,
∅〉”〉) |
144 | 12, 27 | efger 19324 |
. . . . . . 7
⊢ ∼ Er
𝑊 |
145 | 144 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ∼ Er 𝑊) |
146 | 145, 21 | erref 8518 |
. . . . 5
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∼
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉) |
147 | 143, 146 | eqbrtrrid 5110 |
. . . 4
⊢ (𝜑 → (〈“〈𝐴, ∅〉”〉 ++
〈“〈𝐵,
∅〉”〉) ∼
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉) |
148 | 143 | ovexi 7309 |
. . . . 5
⊢
〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈
V |
149 | | ovex 7308 |
. . . . 5
⊢
(〈“〈𝐴, ∅〉”〉 ++
〈“〈𝐵,
∅〉”〉) ∈ V |
150 | 148, 149 | elec 8542 |
. . . 4
⊢
(〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈
[(〈“〈𝐴,
∅〉”〉 ++ 〈“〈𝐵, ∅〉”〉)] ∼ ↔
(〈“〈𝐴,
∅〉”〉 ++ 〈“〈𝐵, ∅〉”〉) ∼
〈“〈𝐴,
∅〉〈𝐵,
∅〉”〉) |
151 | 147, 150 | sylibr 233 |
. . 3
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ [(〈“〈𝐴, ∅〉”〉 ++
〈“〈𝐵,
∅〉”〉)] ∼ ) |
152 | | frgpnabl.u |
. . . . . . 7
⊢ 𝑈 =
(varFGrp‘𝐼) |
153 | 27, 152 | vrgpval 19373 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼
) |
154 | 13, 1, 153 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼
) |
155 | 27, 152 | vrgpval 19373 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐵 ∈ 𝐼) → (𝑈‘𝐵) = [〈“〈𝐵, ∅〉”〉] ∼
) |
156 | 13, 8, 155 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑈‘𝐵) = [〈“〈𝐵, ∅〉”〉] ∼
) |
157 | 154, 156 | oveq12d 7293 |
. . . 4
⊢ (𝜑 → ((𝑈‘𝐴) + (𝑈‘𝐵)) = ([〈“〈𝐴, ∅〉”〉] ∼ +
[〈“〈𝐵,
∅〉”〉] ∼ )) |
158 | 7 | s1cld 14308 |
. . . . . 6
⊢ (𝜑 → 〈“〈𝐴, ∅〉”〉
∈ Word (𝐼 ×
2o)) |
159 | 158, 20 | eleqtrrd 2842 |
. . . . 5
⊢ (𝜑 → 〈“〈𝐴, ∅〉”〉
∈ 𝑊) |
160 | 10 | s1cld 14308 |
. . . . . 6
⊢ (𝜑 → 〈“〈𝐵, ∅〉”〉
∈ Word (𝐼 ×
2o)) |
161 | 160, 20 | eleqtrrd 2842 |
. . . . 5
⊢ (𝜑 → 〈“〈𝐵, ∅〉”〉
∈ 𝑊) |
162 | | frgpnabl.g |
. . . . . 6
⊢ 𝐺 = (freeGrp‘𝐼) |
163 | | frgpnabl.p |
. . . . . 6
⊢ + =
(+g‘𝐺) |
164 | 12, 162, 27, 163 | frgpadd 19369 |
. . . . 5
⊢
((〈“〈𝐴, ∅〉”〉 ∈ 𝑊 ∧ 〈“〈𝐵, ∅〉”〉
∈ 𝑊) →
([〈“〈𝐴,
∅〉”〉] ∼ + [〈“〈𝐵, ∅〉”〉]
∼
) = [(〈“〈𝐴,
∅〉”〉 ++ 〈“〈𝐵, ∅〉”〉)] ∼
) |
165 | 159, 161,
164 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ([〈“〈𝐴, ∅〉”〉]
∼
+
[〈“〈𝐵,
∅〉”〉] ∼ ) =
[(〈“〈𝐴,
∅〉”〉 ++ 〈“〈𝐵, ∅〉”〉)] ∼
) |
166 | 157, 165 | eqtrd 2778 |
. . 3
⊢ (𝜑 → ((𝑈‘𝐴) + (𝑈‘𝐵)) = [(〈“〈𝐴, ∅〉”〉 ++
〈“〈𝐵,
∅〉”〉)] ∼ ) |
167 | 151, 166 | eleqtrrd 2842 |
. 2
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ ((𝑈‘𝐴) + (𝑈‘𝐵))) |
168 | 142, 167 | elind 4128 |
1
⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉
∈ (𝐷 ∩ ((𝑈‘𝐴) + (𝑈‘𝐵)))) |