MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpnabllem1 Structured version   Visualization version   GIF version

Theorem frgpnabllem1 19778
Description: Lemma for frgpnabl 19780. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 25-Apr-2024.)
Hypotheses
Ref Expression
frgpnabl.g 𝐺 = (freeGrp‘𝐼)
frgpnabl.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpnabl.r = ( ~FG𝐼)
frgpnabl.p + = (+g𝐺)
frgpnabl.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
frgpnabl.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
frgpnabl.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
frgpnabl.u 𝑈 = (varFGrp𝐼)
frgpnabl.i (𝜑𝐼𝑉)
frgpnabl.a (𝜑𝐴𝐼)
frgpnabl.b (𝜑𝐵𝐼)
Assertion
Ref Expression
frgpnabllem1 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ (𝐷 ∩ ((𝑈𝐴) + (𝑈𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑣,𝑛,𝑤,𝑥,𝑦,𝑧,𝐼   𝜑,𝑥   𝑥, ,𝑦,𝑧   𝑥,𝐵   𝑛,𝑊,𝑣,𝑤,𝑥,𝑦,𝑧   𝑥,𝐺   𝑛,𝑀,𝑣,𝑤,𝑥   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐵(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   + (𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   𝐺(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)

Proof of Theorem frgpnabllem1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpnabl.a . . . . . . 7 (𝜑𝐴𝐼)
2 0ex 5243 . . . . . . . . 9 ∅ ∈ V
32prid1 4713 . . . . . . . 8 ∅ ∈ {∅, 1o}
4 df2o3 8388 . . . . . . . 8 2o = {∅, 1o}
53, 4eleqtrri 2828 . . . . . . 7 ∅ ∈ 2o
6 opelxpi 5651 . . . . . . 7 ((𝐴𝐼 ∧ ∅ ∈ 2o) → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2o))
71, 5, 6sylancl 586 . . . . . 6 (𝜑 → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2o))
8 frgpnabl.b . . . . . . 7 (𝜑𝐵𝐼)
9 opelxpi 5651 . . . . . . 7 ((𝐵𝐼 ∧ ∅ ∈ 2o) → ⟨𝐵, ∅⟩ ∈ (𝐼 × 2o))
108, 5, 9sylancl 586 . . . . . 6 (𝜑 → ⟨𝐵, ∅⟩ ∈ (𝐼 × 2o))
117, 10s2cld 14770 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ Word (𝐼 × 2o))
12 frgpnabl.w . . . . . 6 𝑊 = ( I ‘Word (𝐼 × 2o))
13 frgpnabl.i . . . . . . . 8 (𝜑𝐼𝑉)
14 2on 8393 . . . . . . . 8 2o ∈ On
15 xpexg 7678 . . . . . . . 8 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
1613, 14, 15sylancl 586 . . . . . . 7 (𝜑 → (𝐼 × 2o) ∈ V)
17 wrdexg 14423 . . . . . . 7 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
18 fvi 6893 . . . . . . 7 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1916, 17, 183syl 18 . . . . . 6 (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
2012, 19eqtrid 2777 . . . . 5 (𝜑𝑊 = Word (𝐼 × 2o))
2111, 20eleqtrrd 2832 . . . 4 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝑊)
22 1n0 8398 . . . . . . 7 1o ≠ ∅
23 2cn 12192 . . . . . . . . . . . . . 14 2 ∈ ℂ
2423addlidi 11293 . . . . . . . . . . . . 13 (0 + 2) = 2
25 s2len 14788 . . . . . . . . . . . . 13 (♯‘⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩) = 2
2624, 25eqtr4i 2756 . . . . . . . . . . . 12 (0 + 2) = (♯‘⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩)
27 frgpnabl.r . . . . . . . . . . . . . 14 = ( ~FG𝐼)
28 frgpnabl.m . . . . . . . . . . . . . 14 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
29 frgpnabl.t . . . . . . . . . . . . . 14 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
3012, 27, 28, 29efgtlen 19631 . . . . . . . . . . . . 13 ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → (♯‘⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩) = ((♯‘𝑥) + 2))
3130adantll 714 . . . . . . . . . . . 12 (((𝜑𝑥𝑊) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → (♯‘⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩) = ((♯‘𝑥) + 2))
3226, 31eqtrid 2777 . . . . . . . . . . 11 (((𝜑𝑥𝑊) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → (0 + 2) = ((♯‘𝑥) + 2))
3332ex 412 . . . . . . . . . 10 ((𝜑𝑥𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥) → (0 + 2) = ((♯‘𝑥) + 2)))
34 0cnd 11097 . . . . . . . . . . 11 ((𝜑𝑥𝑊) → 0 ∈ ℂ)
35 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑊) → 𝑥𝑊)
3612efgrcl 19620 . . . . . . . . . . . . . . . 16 (𝑥𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
3736simprd 495 . . . . . . . . . . . . . . 15 (𝑥𝑊𝑊 = Word (𝐼 × 2o))
3837adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑊) → 𝑊 = Word (𝐼 × 2o))
3935, 38eleqtrd 2831 . . . . . . . . . . . . 13 ((𝜑𝑥𝑊) → 𝑥 ∈ Word (𝐼 × 2o))
40 lencl 14432 . . . . . . . . . . . . 13 (𝑥 ∈ Word (𝐼 × 2o) → (♯‘𝑥) ∈ ℕ0)
4139, 40syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝑊) → (♯‘𝑥) ∈ ℕ0)
4241nn0cnd 12436 . . . . . . . . . . 11 ((𝜑𝑥𝑊) → (♯‘𝑥) ∈ ℂ)
43 2cnd 12195 . . . . . . . . . . 11 ((𝜑𝑥𝑊) → 2 ∈ ℂ)
4434, 42, 43addcan2d 11309 . . . . . . . . . 10 ((𝜑𝑥𝑊) → ((0 + 2) = ((♯‘𝑥) + 2) ↔ 0 = (♯‘𝑥)))
4533, 44sylibd 239 . . . . . . . . 9 ((𝜑𝑥𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥) → 0 = (♯‘𝑥)))
4612, 27, 28, 29efgtf 19627 . . . . . . . . . . . . . . . . . 18 (∅ ∈ 𝑊 → ((𝑇‘∅) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇‘∅):((0...(♯‘∅)) × (𝐼 × 2o))⟶𝑊))
4746adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ∅ ∈ 𝑊) → ((𝑇‘∅) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇‘∅):((0...(♯‘∅)) × (𝐼 × 2o))⟶𝑊))
4847simpld 494 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∅ ∈ 𝑊) → (𝑇‘∅) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
4948rneqd 5875 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ∅ ∈ 𝑊) → ran (𝑇‘∅) = ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5049eleq2d 2815 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∅ ∈ 𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅) ↔ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))))
51 eqid 2730 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
52 ovex 7374 . . . . . . . . . . . . . . . 16 (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ V
5351, 52elrnmpo 7477 . . . . . . . . . . . . . . 15 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ↔ ∃𝑎 ∈ (0...(♯‘∅))∃𝑏 ∈ (𝐼 × 2o)⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
54 wrd0 14438 . . . . . . . . . . . . . . . . . . . . 21 ∅ ∈ Word (𝐼 × 2o)
5554a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → ∅ ∈ Word (𝐼 × 2o))
56 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑏 ∈ (𝐼 × 2o))
5728efgmf 19618 . . . . . . . . . . . . . . . . . . . . . . 23 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
5857ffvelcdmi 7011 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ∈ (𝐼 × 2o) → (𝑀𝑏) ∈ (𝐼 × 2o))
5956, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀𝑏) ∈ (𝐼 × 2o))
6056, 59s2cld 14770 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → ⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o))
61 ccatidid 14490 . . . . . . . . . . . . . . . . . . . . . . 23 (∅ ++ ∅) = ∅
6261oveq1i 7351 . . . . . . . . . . . . . . . . . . . . . 22 ((∅ ++ ∅) ++ ∅) = (∅ ++ ∅)
6362, 61eqtr2i 2754 . . . . . . . . . . . . . . . . . . . . 21 ∅ = ((∅ ++ ∅) ++ ∅)
6463a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → ∅ = ((∅ ++ ∅) ++ ∅))
65 simprl 770 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ (0...(♯‘∅)))
66 hash0 14266 . . . . . . . . . . . . . . . . . . . . . . . 24 (♯‘∅) = 0
6766oveq2i 7352 . . . . . . . . . . . . . . . . . . . . . . 23 (0...(♯‘∅)) = (0...0)
6865, 67eleqtrdi 2839 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ (0...0))
69 elfz1eq 13427 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ (0...0) → 𝑎 = 0)
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 = 0)
7170, 66eqtr4di 2783 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 = (♯‘∅))
7266oveq2i 7352 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 + (♯‘∅)) = (𝑎 + 0)
73 0cn 11096 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℂ
7470, 73eqeltrdi 2837 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ ℂ)
7574addridd 11305 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 + 0) = 𝑎)
7672, 75eqtr2id 2778 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 = (𝑎 + (♯‘∅)))
7755, 55, 55, 60, 64, 71, 76splval2 14656 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) = ((∅ ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ ∅))
78 ccatlid 14486 . . . . . . . . . . . . . . . . . . . . . 22 (⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o) → (∅ ++ ⟨“𝑏(𝑀𝑏)”⟩) = ⟨“𝑏(𝑀𝑏)”⟩)
7978oveq1d 7356 . . . . . . . . . . . . . . . . . . . . 21 (⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o) → ((∅ ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ ∅) = (⟨“𝑏(𝑀𝑏)”⟩ ++ ∅))
80 ccatrid 14487 . . . . . . . . . . . . . . . . . . . . 21 (⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o) → (⟨“𝑏(𝑀𝑏)”⟩ ++ ∅) = ⟨“𝑏(𝑀𝑏)”⟩)
8179, 80eqtrd 2765 . . . . . . . . . . . . . . . . . . . 20 (⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o) → ((∅ ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ ∅) = ⟨“𝑏(𝑀𝑏)”⟩)
8260, 81syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((∅ ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ ∅) = ⟨“𝑏(𝑀𝑏)”⟩)
8377, 82eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) = ⟨“𝑏(𝑀𝑏)”⟩)
8483eqeq2d 2741 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ↔ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩))
851ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → 𝐴𝐼)
86 1on 8392 . . . . . . . . . . . . . . . . . . . 20 1o ∈ On
8786a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → 1o ∈ On)
88 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩)
8988fveq1d 6819 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘1) = (⟨“𝑏(𝑀𝑏)”⟩‘1))
90 opex 5402 . . . . . . . . . . . . . . . . . . . . . 22 𝐵, ∅⟩ ∈ V
91 s2fv1 14787 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝐵, ∅⟩ ∈ V → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘1) = ⟨𝐵, ∅⟩)
9290, 91ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘1) = ⟨𝐵, ∅⟩
93 fvex 6830 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀𝑏) ∈ V
94 s2fv1 14787 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀𝑏) ∈ V → (⟨“𝑏(𝑀𝑏)”⟩‘1) = (𝑀𝑏))
9593, 94ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (⟨“𝑏(𝑀𝑏)”⟩‘1) = (𝑀𝑏)
9689, 92, 953eqtr3g 2788 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → ⟨𝐵, ∅⟩ = (𝑀𝑏))
9788fveq1d 6819 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = (⟨“𝑏(𝑀𝑏)”⟩‘0))
98 opex 5402 . . . . . . . . . . . . . . . . . . . . . . 23 𝐴, ∅⟩ ∈ V
99 s2fv0 14786 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝐴, ∅⟩ ∈ V → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = ⟨𝐴, ∅⟩)
10098, 99ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = ⟨𝐴, ∅⟩
101 s2fv0 14786 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ V → (⟨“𝑏(𝑀𝑏)”⟩‘0) = 𝑏)
102101elv 3439 . . . . . . . . . . . . . . . . . . . . . 22 (⟨“𝑏(𝑀𝑏)”⟩‘0) = 𝑏
10397, 100, 1023eqtr3g 2788 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → ⟨𝐴, ∅⟩ = 𝑏)
104103fveq2d 6821 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → (𝑀‘⟨𝐴, ∅⟩) = (𝑀𝑏))
10528efgmval 19617 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝐼 ∧ ∅ ∈ 2o) → (𝐴𝑀∅) = ⟨𝐴, (1o ∖ ∅)⟩)
10685, 5, 105sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → (𝐴𝑀∅) = ⟨𝐴, (1o ∖ ∅)⟩)
107 df-ov 7344 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝑀∅) = (𝑀‘⟨𝐴, ∅⟩)
108 dif0 4326 . . . . . . . . . . . . . . . . . . . . . 22 (1o ∖ ∅) = 1o
109108opeq2i 4827 . . . . . . . . . . . . . . . . . . . . 21 𝐴, (1o ∖ ∅)⟩ = ⟨𝐴, 1o
110106, 107, 1093eqtr3g 2788 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → (𝑀‘⟨𝐴, ∅⟩) = ⟨𝐴, 1o⟩)
11196, 104, 1103eqtr2rd 2772 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → ⟨𝐴, 1o⟩ = ⟨𝐵, ∅⟩)
112 opthg 5415 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝐼 ∧ 1o ∈ On) → (⟨𝐴, 1o⟩ = ⟨𝐵, ∅⟩ ↔ (𝐴 = 𝐵 ∧ 1o = ∅)))
113112simplbda 499 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐼 ∧ 1o ∈ On) ∧ ⟨𝐴, 1o⟩ = ⟨𝐵, ∅⟩) → 1o = ∅)
11485, 87, 111, 113syl21anc 837 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → 1o = ∅)
115114ex 412 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩ → 1o = ∅))
11684, 115sylbid 240 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) → 1o = ∅))
117116rexlimdvva 3187 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ∅ ∈ 𝑊) → (∃𝑎 ∈ (0...(♯‘∅))∃𝑏 ∈ (𝐼 × 2o)⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) → 1o = ∅))
11853, 117biimtrid 242 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∅ ∈ 𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2o) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) → 1o = ∅))
11950, 118sylbid 240 . . . . . . . . . . . . 13 ((𝜑 ∧ ∅ ∈ 𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅) → 1o = ∅))
120119expimpd 453 . . . . . . . . . . . 12 (𝜑 → ((∅ ∈ 𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅)) → 1o = ∅))
121 hasheq0 14262 . . . . . . . . . . . . . . . 16 (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
122121elv 3439 . . . . . . . . . . . . . . 15 ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)
123 eleq1 2817 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (𝑥𝑊 ↔ ∅ ∈ 𝑊))
124 fveq2 6817 . . . . . . . . . . . . . . . . . 18 (𝑥 = ∅ → (𝑇𝑥) = (𝑇‘∅))
125124rneqd 5875 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → ran (𝑇𝑥) = ran (𝑇‘∅))
126125eleq2d 2815 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥) ↔ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅)))
127123, 126anbi12d 632 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) ↔ (∅ ∈ 𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅))))
128122, 127sylbi 217 . . . . . . . . . . . . . 14 ((♯‘𝑥) = 0 → ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) ↔ (∅ ∈ 𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅))))
129128eqcoms 2738 . . . . . . . . . . . . 13 (0 = (♯‘𝑥) → ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) ↔ (∅ ∈ 𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅))))
130129imbi1d 341 . . . . . . . . . . . 12 (0 = (♯‘𝑥) → (((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → 1o = ∅) ↔ ((∅ ∈ 𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅)) → 1o = ∅)))
131120, 130syl5ibrcom 247 . . . . . . . . . . 11 (𝜑 → (0 = (♯‘𝑥) → ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → 1o = ∅)))
132131com23 86 . . . . . . . . . 10 (𝜑 → ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → (0 = (♯‘𝑥) → 1o = ∅)))
133132expdimp 452 . . . . . . . . 9 ((𝜑𝑥𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥) → (0 = (♯‘𝑥) → 1o = ∅)))
13445, 133mpdd 43 . . . . . . . 8 ((𝜑𝑥𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥) → 1o = ∅))
135134necon3ad 2939 . . . . . . 7 ((𝜑𝑥𝑊) → (1o ≠ ∅ → ¬ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)))
13622, 135mpi 20 . . . . . 6 ((𝜑𝑥𝑊) → ¬ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥))
137136nrexdv 3125 . . . . 5 (𝜑 → ¬ ∃𝑥𝑊 ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥))
138 eliun 4943 . . . . 5 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝑥𝑊 ran (𝑇𝑥) ↔ ∃𝑥𝑊 ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥))
139137, 138sylnibr 329 . . . 4 (𝜑 → ¬ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝑥𝑊 ran (𝑇𝑥))
14021, 139eldifd 3911 . . 3 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)))
141 frgpnabl.d . . 3 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
142140, 141eleqtrrdi 2840 . 2 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝐷)
143 df-s2 14747 . . . . 5 ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = (⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)
14412, 27efger 19623 . . . . . . 7 Er 𝑊
145144a1i 11 . . . . . 6 (𝜑 Er 𝑊)
146145, 21erref 8637 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩)
147143, 146eqbrtrrid 5125 . . . 4 (𝜑 → (⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩) ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩)
148143ovexi 7375 . . . . 5 ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ V
149 ovex 7374 . . . . 5 (⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩) ∈ V
150148, 149elec 8663 . . . 4 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ [(⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)] ↔ (⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩) ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩)
151147, 150sylibr 234 . . 3 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ [(⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)] )
152 frgpnabl.u . . . . . . 7 𝑈 = (varFGrp𝐼)
15327, 152vrgpval 19672 . . . . . 6 ((𝐼𝑉𝐴𝐼) → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
15413, 1, 153syl2anc 584 . . . . 5 (𝜑 → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
15527, 152vrgpval 19672 . . . . . 6 ((𝐼𝑉𝐵𝐼) → (𝑈𝐵) = [⟨“⟨𝐵, ∅⟩”⟩] )
15613, 8, 155syl2anc 584 . . . . 5 (𝜑 → (𝑈𝐵) = [⟨“⟨𝐵, ∅⟩”⟩] )
157154, 156oveq12d 7359 . . . 4 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = ([⟨“⟨𝐴, ∅⟩”⟩] + [⟨“⟨𝐵, ∅⟩”⟩] ))
1587s1cld 14503 . . . . . 6 (𝜑 → ⟨“⟨𝐴, ∅⟩”⟩ ∈ Word (𝐼 × 2o))
159158, 20eleqtrrd 2832 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩”⟩ ∈ 𝑊)
16010s1cld 14503 . . . . . 6 (𝜑 → ⟨“⟨𝐵, ∅⟩”⟩ ∈ Word (𝐼 × 2o))
161160, 20eleqtrrd 2832 . . . . 5 (𝜑 → ⟨“⟨𝐵, ∅⟩”⟩ ∈ 𝑊)
162 frgpnabl.g . . . . . 6 𝐺 = (freeGrp‘𝐼)
163 frgpnabl.p . . . . . 6 + = (+g𝐺)
16412, 162, 27, 163frgpadd 19668 . . . . 5 ((⟨“⟨𝐴, ∅⟩”⟩ ∈ 𝑊 ∧ ⟨“⟨𝐵, ∅⟩”⟩ ∈ 𝑊) → ([⟨“⟨𝐴, ∅⟩”⟩] + [⟨“⟨𝐵, ∅⟩”⟩] ) = [(⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)] )
165159, 161, 164syl2anc 584 . . . 4 (𝜑 → ([⟨“⟨𝐴, ∅⟩”⟩] + [⟨“⟨𝐵, ∅⟩”⟩] ) = [(⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)] )
166157, 165eqtrd 2765 . . 3 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = [(⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)] )
167151, 166eleqtrrd 2832 . 2 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵)))
168142, 167elind 4148 1 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ (𝐷 ∩ ((𝑈𝐴) + (𝑈𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926  wrex 3054  Vcvv 3434  cdif 3897  cin 3899  c0 4281  {cpr 4576  cop 4580  cotp 4582   ciun 4939   class class class wbr 5089  cmpt 5170   I cid 5508   × cxp 5612  ran crn 5615  Oncon0 6302  wf 6473  cfv 6477  (class class class)co 7341  cmpo 7343  1oc1o 8373  2oc2o 8374   Er wer 8614  [cec 8615  cc 10996  0cc0 10998  1c1 10999   + caddc 11001  2c2 12172  0cn0 12373  ...cfz 13399  chash 14229  Word cword 14412   ++ cconcat 14469  ⟨“cs1 14495   splice csplice 14648  ⟨“cs2 14740  +gcplusg 17153   ~FG cefg 19611  freeGrpcfrgp 19612  varFGrpcvrgp 19613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-ec 8619  df-qs 8623  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-fzo 13547  df-hash 14230  df-word 14413  df-concat 14470  df-s1 14496  df-substr 14541  df-pfx 14571  df-splice 14649  df-s2 14747  df-struct 17050  df-slot 17085  df-ndx 17097  df-base 17113  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-imas 17404  df-qus 17405  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-frmd 18749  df-efg 19614  df-frgp 19615  df-vrgp 19616
This theorem is referenced by:  frgpnabllem2  19779
  Copyright terms: Public domain W3C validator