MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpnabllem1 Structured version   Visualization version   GIF version

Theorem frgpnabllem1 18542
Description: Lemma for frgpnabl 18544. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
frgpnabl.g 𝐺 = (freeGrp‘𝐼)
frgpnabl.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
frgpnabl.r = ( ~FG𝐼)
frgpnabl.p + = (+g𝐺)
frgpnabl.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
frgpnabl.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
frgpnabl.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
frgpnabl.u 𝑈 = (varFGrp𝐼)
frgpnabl.i (𝜑𝐼 ∈ V)
frgpnabl.a (𝜑𝐴𝐼)
frgpnabl.b (𝜑𝐵𝐼)
Assertion
Ref Expression
frgpnabllem1 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ (𝐷 ∩ ((𝑈𝐴) + (𝑈𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑣,𝑛,𝑤,𝑥,𝑦,𝑧,𝐼   𝜑,𝑥   𝑥, ,𝑦,𝑧   𝑥,𝐵   𝑛,𝑊,𝑣,𝑤,𝑥,𝑦,𝑧   𝑥,𝐺   𝑛,𝑀,𝑣,𝑤,𝑥   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐵(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   + (𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑦,𝑧,𝑤,𝑣,𝑛)   𝐺(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)

Proof of Theorem frgpnabllem1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpnabl.a . . . . . . 7 (𝜑𝐴𝐼)
2 0ex 4950 . . . . . . . . 9 ∅ ∈ V
32prid1 4452 . . . . . . . 8 ∅ ∈ {∅, 1𝑜}
4 df2o3 7778 . . . . . . . 8 2𝑜 = {∅, 1𝑜}
53, 4eleqtrri 2843 . . . . . . 7 ∅ ∈ 2𝑜
6 opelxpi 5314 . . . . . . 7 ((𝐴𝐼 ∧ ∅ ∈ 2𝑜) → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2𝑜))
71, 5, 6sylancl 580 . . . . . 6 (𝜑 → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2𝑜))
8 frgpnabl.b . . . . . . 7 (𝜑𝐵𝐼)
9 opelxpi 5314 . . . . . . 7 ((𝐵𝐼 ∧ ∅ ∈ 2𝑜) → ⟨𝐵, ∅⟩ ∈ (𝐼 × 2𝑜))
108, 5, 9sylancl 580 . . . . . 6 (𝜑 → ⟨𝐵, ∅⟩ ∈ (𝐼 × 2𝑜))
117, 10s2cld 13900 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ Word (𝐼 × 2𝑜))
12 frgpnabl.w . . . . . 6 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
13 frgpnabl.i . . . . . . . 8 (𝜑𝐼 ∈ V)
14 2on 7773 . . . . . . . 8 2𝑜 ∈ On
15 xpexg 7158 . . . . . . . 8 ((𝐼 ∈ V ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V)
1613, 14, 15sylancl 580 . . . . . . 7 (𝜑 → (𝐼 × 2𝑜) ∈ V)
17 wrdexg 13496 . . . . . . 7 ((𝐼 × 2𝑜) ∈ V → Word (𝐼 × 2𝑜) ∈ V)
18 fvi 6444 . . . . . . 7 (Word (𝐼 × 2𝑜) ∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
1916, 17, 183syl 18 . . . . . 6 (𝜑 → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
2012, 19syl5eq 2811 . . . . 5 (𝜑𝑊 = Word (𝐼 × 2𝑜))
2111, 20eleqtrrd 2847 . . . 4 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝑊)
22 1n0 7780 . . . . . . 7 1𝑜 ≠ ∅
23 2cn 11347 . . . . . . . . . . . . . 14 2 ∈ ℂ
2423addid2i 10478 . . . . . . . . . . . . 13 (0 + 2) = 2
25 s2len 13918 . . . . . . . . . . . . 13 (♯‘⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩) = 2
2624, 25eqtr4i 2790 . . . . . . . . . . . 12 (0 + 2) = (♯‘⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩)
27 frgpnabl.r . . . . . . . . . . . . . 14 = ( ~FG𝐼)
28 frgpnabl.m . . . . . . . . . . . . . 14 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
29 frgpnabl.t . . . . . . . . . . . . . 14 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
3012, 27, 28, 29efgtlen 18403 . . . . . . . . . . . . 13 ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → (♯‘⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩) = ((♯‘𝑥) + 2))
3130adantll 705 . . . . . . . . . . . 12 (((𝜑𝑥𝑊) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → (♯‘⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩) = ((♯‘𝑥) + 2))
3226, 31syl5eq 2811 . . . . . . . . . . 11 (((𝜑𝑥𝑊) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → (0 + 2) = ((♯‘𝑥) + 2))
3332ex 401 . . . . . . . . . 10 ((𝜑𝑥𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥) → (0 + 2) = ((♯‘𝑥) + 2)))
34 0cnd 10286 . . . . . . . . . . 11 ((𝜑𝑥𝑊) → 0 ∈ ℂ)
35 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑊) → 𝑥𝑊)
3612efgrcl 18392 . . . . . . . . . . . . . . . 16 (𝑥𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜)))
3736simprd 489 . . . . . . . . . . . . . . 15 (𝑥𝑊𝑊 = Word (𝐼 × 2𝑜))
3837adantl 473 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑊) → 𝑊 = Word (𝐼 × 2𝑜))
3935, 38eleqtrd 2846 . . . . . . . . . . . . 13 ((𝜑𝑥𝑊) → 𝑥 ∈ Word (𝐼 × 2𝑜))
40 lencl 13505 . . . . . . . . . . . . 13 (𝑥 ∈ Word (𝐼 × 2𝑜) → (♯‘𝑥) ∈ ℕ0)
4139, 40syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝑊) → (♯‘𝑥) ∈ ℕ0)
4241nn0cnd 11600 . . . . . . . . . . 11 ((𝜑𝑥𝑊) → (♯‘𝑥) ∈ ℂ)
43 2cnd 11350 . . . . . . . . . . 11 ((𝜑𝑥𝑊) → 2 ∈ ℂ)
4434, 42, 43addcan2d 10494 . . . . . . . . . 10 ((𝜑𝑥𝑊) → ((0 + 2) = ((♯‘𝑥) + 2) ↔ 0 = (♯‘𝑥)))
4533, 44sylibd 230 . . . . . . . . 9 ((𝜑𝑥𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥) → 0 = (♯‘𝑥)))
4612, 27, 28, 29efgtf 18399 . . . . . . . . . . . . . . . . . 18 (∅ ∈ 𝑊 → ((𝑇‘∅) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇‘∅):((0...(♯‘∅)) × (𝐼 × 2𝑜))⟶𝑊))
4746adantl 473 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ∅ ∈ 𝑊) → ((𝑇‘∅) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇‘∅):((0...(♯‘∅)) × (𝐼 × 2𝑜))⟶𝑊))
4847simpld 488 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∅ ∈ 𝑊) → (𝑇‘∅) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
4948rneqd 5521 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ∅ ∈ 𝑊) → ran (𝑇‘∅) = ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5049eleq2d 2830 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∅ ∈ 𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅) ↔ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))))
51 eqid 2765 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
52 ovex 6874 . . . . . . . . . . . . . . . 16 (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ V
5351, 52elrnmpt2 6971 . . . . . . . . . . . . . . 15 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ↔ ∃𝑎 ∈ (0...(♯‘∅))∃𝑏 ∈ (𝐼 × 2𝑜)⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
54 wrd0 13511 . . . . . . . . . . . . . . . . . . . . 21 ∅ ∈ Word (𝐼 × 2𝑜)
5554a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → ∅ ∈ Word (𝐼 × 2𝑜))
56 simprr 789 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑏 ∈ (𝐼 × 2𝑜))
5728efgmf 18390 . . . . . . . . . . . . . . . . . . . . . . 23 𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜)
5857ffvelrni 6548 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ∈ (𝐼 × 2𝑜) → (𝑀𝑏) ∈ (𝐼 × 2𝑜))
5956, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (𝑀𝑏) ∈ (𝐼 × 2𝑜))
6056, 59s2cld 13900 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → ⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2𝑜))
61 ccatlid 13557 . . . . . . . . . . . . . . . . . . . . . . . 24 (∅ ∈ Word (𝐼 × 2𝑜) → (∅ ++ ∅) = ∅)
6254, 61ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (∅ ++ ∅) = ∅
6362oveq1i 6852 . . . . . . . . . . . . . . . . . . . . . 22 ((∅ ++ ∅) ++ ∅) = (∅ ++ ∅)
6463, 62eqtr2i 2788 . . . . . . . . . . . . . . . . . . . . 21 ∅ = ((∅ ++ ∅) ++ ∅)
6564a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → ∅ = ((∅ ++ ∅) ++ ∅))
66 simprl 787 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑎 ∈ (0...(♯‘∅)))
67 hash0 13360 . . . . . . . . . . . . . . . . . . . . . . . 24 (♯‘∅) = 0
6867oveq2i 6853 . . . . . . . . . . . . . . . . . . . . . . 23 (0...(♯‘∅)) = (0...0)
6966, 68syl6eleq 2854 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑎 ∈ (0...0))
70 elfz1eq 12559 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ (0...0) → 𝑎 = 0)
7169, 70syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑎 = 0)
7271, 67syl6eqr 2817 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑎 = (♯‘∅))
7367oveq2i 6853 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 + (♯‘∅)) = (𝑎 + 0)
74 0cn 10285 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℂ
7571, 74syl6eqel 2852 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑎 ∈ ℂ)
7675addid1d 10490 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (𝑎 + 0) = 𝑎)
7773, 76syl5req 2812 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑎 = (𝑎 + (♯‘∅)))
7855, 55, 55, 60, 65, 72, 77splval2 13780 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) = ((∅ ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ ∅))
79 ccatlid 13557 . . . . . . . . . . . . . . . . . . . . . 22 (⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2𝑜) → (∅ ++ ⟨“𝑏(𝑀𝑏)”⟩) = ⟨“𝑏(𝑀𝑏)”⟩)
8079oveq1d 6857 . . . . . . . . . . . . . . . . . . . . 21 (⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2𝑜) → ((∅ ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ ∅) = (⟨“𝑏(𝑀𝑏)”⟩ ++ ∅))
81 ccatrid 13558 . . . . . . . . . . . . . . . . . . . . 21 (⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2𝑜) → (⟨“𝑏(𝑀𝑏)”⟩ ++ ∅) = ⟨“𝑏(𝑀𝑏)”⟩)
8280, 81eqtrd 2799 . . . . . . . . . . . . . . . . . . . 20 (⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2𝑜) → ((∅ ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ ∅) = ⟨“𝑏(𝑀𝑏)”⟩)
8360, 82syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → ((∅ ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ ∅) = ⟨“𝑏(𝑀𝑏)”⟩)
8478, 83eqtrd 2799 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) = ⟨“𝑏(𝑀𝑏)”⟩)
8584eqeq2d 2775 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ↔ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩))
861ad3antrrr 721 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → 𝐴𝐼)
87 1on 7771 . . . . . . . . . . . . . . . . . . . 20 1𝑜 ∈ On
8887a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → 1𝑜 ∈ On)
89 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩)
9089fveq1d 6377 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘1) = (⟨“𝑏(𝑀𝑏)”⟩‘1))
91 opex 5088 . . . . . . . . . . . . . . . . . . . . . 22 𝐵, ∅⟩ ∈ V
92 s2fv1 13917 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝐵, ∅⟩ ∈ V → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘1) = ⟨𝐵, ∅⟩)
9391, 92ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘1) = ⟨𝐵, ∅⟩
94 fvex 6388 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀𝑏) ∈ V
95 s2fv1 13917 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀𝑏) ∈ V → (⟨“𝑏(𝑀𝑏)”⟩‘1) = (𝑀𝑏))
9694, 95ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (⟨“𝑏(𝑀𝑏)”⟩‘1) = (𝑀𝑏)
9790, 93, 963eqtr3g 2822 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → ⟨𝐵, ∅⟩ = (𝑀𝑏))
9889fveq1d 6377 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = (⟨“𝑏(𝑀𝑏)”⟩‘0))
99 opex 5088 . . . . . . . . . . . . . . . . . . . . . . 23 𝐴, ∅⟩ ∈ V
100 s2fv0 13916 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝐴, ∅⟩ ∈ V → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = ⟨𝐴, ∅⟩)
10199, 100ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩‘0) = ⟨𝐴, ∅⟩
102 vex 3353 . . . . . . . . . . . . . . . . . . . . . . 23 𝑏 ∈ V
103 s2fv0 13916 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ V → (⟨“𝑏(𝑀𝑏)”⟩‘0) = 𝑏)
104102, 103ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (⟨“𝑏(𝑀𝑏)”⟩‘0) = 𝑏
10598, 101, 1043eqtr3g 2822 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → ⟨𝐴, ∅⟩ = 𝑏)
106105fveq2d 6379 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → (𝑀‘⟨𝐴, ∅⟩) = (𝑀𝑏))
10728efgmval 18389 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝐼 ∧ ∅ ∈ 2𝑜) → (𝐴𝑀∅) = ⟨𝐴, (1𝑜 ∖ ∅)⟩)
10886, 5, 107sylancl 580 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → (𝐴𝑀∅) = ⟨𝐴, (1𝑜 ∖ ∅)⟩)
109 df-ov 6845 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝑀∅) = (𝑀‘⟨𝐴, ∅⟩)
110 dif0 4115 . . . . . . . . . . . . . . . . . . . . . 22 (1𝑜 ∖ ∅) = 1𝑜
111110opeq2i 4563 . . . . . . . . . . . . . . . . . . . . 21 𝐴, (1𝑜 ∖ ∅)⟩ = ⟨𝐴, 1𝑜
112108, 109, 1113eqtr3g 2822 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → (𝑀‘⟨𝐴, ∅⟩) = ⟨𝐴, 1𝑜⟩)
11397, 106, 1123eqtr2rd 2806 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → ⟨𝐴, 1𝑜⟩ = ⟨𝐵, ∅⟩)
114 opthg 5101 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝐼 ∧ 1𝑜 ∈ On) → (⟨𝐴, 1𝑜⟩ = ⟨𝐵, ∅⟩ ↔ (𝐴 = 𝐵 ∧ 1𝑜 = ∅)))
115114simplbda 493 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐼 ∧ 1𝑜 ∈ On) ∧ ⟨𝐴, 1𝑜⟩ = ⟨𝐵, ∅⟩) → 1𝑜 = ∅)
11686, 88, 113, 115syl21anc 866 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩) → 1𝑜 = ∅)
117116ex 401 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = ⟨“𝑏(𝑀𝑏)”⟩ → 1𝑜 = ∅))
11885, 117sylbid 231 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ∅ ∈ 𝑊) ∧ (𝑎 ∈ (0...(♯‘∅)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) → 1𝑜 = ∅))
119118rexlimdvva 3185 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ∅ ∈ 𝑊) → (∃𝑎 ∈ (0...(♯‘∅))∃𝑏 ∈ (𝐼 × 2𝑜)⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) → 1𝑜 = ∅))
12053, 119syl5bi 233 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∅ ∈ 𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑎 ∈ (0...(♯‘∅)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (∅ splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) → 1𝑜 = ∅))
12150, 120sylbid 231 . . . . . . . . . . . . 13 ((𝜑 ∧ ∅ ∈ 𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅) → 1𝑜 = ∅))
122121expimpd 445 . . . . . . . . . . . 12 (𝜑 → ((∅ ∈ 𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅)) → 1𝑜 = ∅))
123 vex 3353 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
124 hasheq0 13356 . . . . . . . . . . . . . . . 16 (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
125123, 124ax-mp 5 . . . . . . . . . . . . . . 15 ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)
126 eleq1 2832 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (𝑥𝑊 ↔ ∅ ∈ 𝑊))
127 fveq2 6375 . . . . . . . . . . . . . . . . . 18 (𝑥 = ∅ → (𝑇𝑥) = (𝑇‘∅))
128127rneqd 5521 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → ran (𝑇𝑥) = ran (𝑇‘∅))
129128eleq2d 2830 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥) ↔ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅)))
130126, 129anbi12d 624 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) ↔ (∅ ∈ 𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅))))
131125, 130sylbi 208 . . . . . . . . . . . . . 14 ((♯‘𝑥) = 0 → ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) ↔ (∅ ∈ 𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅))))
132131eqcoms 2773 . . . . . . . . . . . . 13 (0 = (♯‘𝑥) → ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) ↔ (∅ ∈ 𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅))))
133132imbi1d 332 . . . . . . . . . . . 12 (0 = (♯‘𝑥) → (((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → 1𝑜 = ∅) ↔ ((∅ ∈ 𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇‘∅)) → 1𝑜 = ∅)))
134122, 133syl5ibrcom 238 . . . . . . . . . . 11 (𝜑 → (0 = (♯‘𝑥) → ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → 1𝑜 = ∅)))
135134com23 86 . . . . . . . . . 10 (𝜑 → ((𝑥𝑊 ∧ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)) → (0 = (♯‘𝑥) → 1𝑜 = ∅)))
136135expdimp 444 . . . . . . . . 9 ((𝜑𝑥𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥) → (0 = (♯‘𝑥) → 1𝑜 = ∅)))
13745, 136mpdd 43 . . . . . . . 8 ((𝜑𝑥𝑊) → (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥) → 1𝑜 = ∅))
138137necon3ad 2950 . . . . . . 7 ((𝜑𝑥𝑊) → (1𝑜 ≠ ∅ → ¬ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥)))
13922, 138mpi 20 . . . . . 6 ((𝜑𝑥𝑊) → ¬ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥))
140139nrexdv 3147 . . . . 5 (𝜑 → ¬ ∃𝑥𝑊 ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥))
141 eliun 4680 . . . . 5 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝑥𝑊 ran (𝑇𝑥) ↔ ∃𝑥𝑊 ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ran (𝑇𝑥))
142140, 141sylnibr 320 . . . 4 (𝜑 → ¬ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝑥𝑊 ran (𝑇𝑥))
14321, 142eldifd 3743 . . 3 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)))
144 frgpnabl.d . . 3 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
145143, 144syl6eleqr 2855 . 2 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ 𝐷)
146 df-s2 13877 . . . . 5 ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ = (⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)
14712, 27efger 18395 . . . . . . 7 Er 𝑊
148147a1i 11 . . . . . 6 (𝜑 Er 𝑊)
149148, 21erref 7967 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩)
150146, 149syl5eqbrr 4845 . . . 4 (𝜑 → (⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩) ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩)
151 ovex 6874 . . . . . 6 (⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩) ∈ V
152146, 151eqeltri 2840 . . . . 5 ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ V
153152, 151elec 7989 . . . 4 (⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ [(⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)] ↔ (⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩) ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩)
154150, 153sylibr 225 . . 3 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ [(⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)] )
155 frgpnabl.u . . . . . . 7 𝑈 = (varFGrp𝐼)
15627, 155vrgpval 18446 . . . . . 6 ((𝐼 ∈ V ∧ 𝐴𝐼) → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
15713, 1, 156syl2anc 579 . . . . 5 (𝜑 → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
15827, 155vrgpval 18446 . . . . . 6 ((𝐼 ∈ V ∧ 𝐵𝐼) → (𝑈𝐵) = [⟨“⟨𝐵, ∅⟩”⟩] )
15913, 8, 158syl2anc 579 . . . . 5 (𝜑 → (𝑈𝐵) = [⟨“⟨𝐵, ∅⟩”⟩] )
160157, 159oveq12d 6860 . . . 4 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = ([⟨“⟨𝐴, ∅⟩”⟩] + [⟨“⟨𝐵, ∅⟩”⟩] ))
1617s1cld 13574 . . . . . 6 (𝜑 → ⟨“⟨𝐴, ∅⟩”⟩ ∈ Word (𝐼 × 2𝑜))
162161, 20eleqtrrd 2847 . . . . 5 (𝜑 → ⟨“⟨𝐴, ∅⟩”⟩ ∈ 𝑊)
16310s1cld 13574 . . . . . 6 (𝜑 → ⟨“⟨𝐵, ∅⟩”⟩ ∈ Word (𝐼 × 2𝑜))
164163, 20eleqtrrd 2847 . . . . 5 (𝜑 → ⟨“⟨𝐵, ∅⟩”⟩ ∈ 𝑊)
165 frgpnabl.g . . . . . 6 𝐺 = (freeGrp‘𝐼)
166 frgpnabl.p . . . . . 6 + = (+g𝐺)
16712, 165, 27, 166frgpadd 18442 . . . . 5 ((⟨“⟨𝐴, ∅⟩”⟩ ∈ 𝑊 ∧ ⟨“⟨𝐵, ∅⟩”⟩ ∈ 𝑊) → ([⟨“⟨𝐴, ∅⟩”⟩] + [⟨“⟨𝐵, ∅⟩”⟩] ) = [(⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)] )
168162, 164, 167syl2anc 579 . . . 4 (𝜑 → ([⟨“⟨𝐴, ∅⟩”⟩] + [⟨“⟨𝐵, ∅⟩”⟩] ) = [(⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)] )
169160, 168eqtrd 2799 . . 3 (𝜑 → ((𝑈𝐴) + (𝑈𝐵)) = [(⟨“⟨𝐴, ∅⟩”⟩ ++ ⟨“⟨𝐵, ∅⟩”⟩)] )
170154, 169eleqtrrd 2847 . 2 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ ((𝑈𝐴) + (𝑈𝐵)))
171145, 170elind 3960 1 (𝜑 → ⟨“⟨𝐴, ∅⟩⟨𝐵, ∅⟩”⟩ ∈ (𝐷 ∩ ((𝑈𝐴) + (𝑈𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wrex 3056  Vcvv 3350  cdif 3729  cin 3731  c0 4079  {cpr 4336  cop 4340  cotp 4342   ciun 4676   class class class wbr 4809  cmpt 4888   I cid 5184   × cxp 5275  ran crn 5278  Oncon0 5908  wf 6064  cfv 6068  (class class class)co 6842  cmpt2 6844  1𝑜c1o 7757  2𝑜c2o 7758   Er wer 7944  [cec 7945  cc 10187  0cc0 10189  1c1 10190   + caddc 10192  2c2 11327  0cn0 11538  ...cfz 12533  chash 13321  Word cword 13486   ++ cconcat 13541  ⟨“cs1 13566   splice csplice 13763  ⟨“cs2 13870  +gcplusg 16214   ~FG cefg 18383  freeGrpcfrgp 18384  varFGrpcvrgp 18385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-ot 4343  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-ec 7949  df-qs 7953  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13487  df-concat 13542  df-s1 13567  df-substr 13617  df-pfx 13662  df-splice 13765  df-s2 13877  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-plusg 16227  df-mulr 16228  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-imas 16434  df-qus 16435  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-frmd 17653  df-efg 18386  df-frgp 18387  df-vrgp 18388
This theorem is referenced by:  frgpnabllem2  18543
  Copyright terms: Public domain W3C validator