MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrds2 Structured version   Visualization version   GIF version

Theorem swrds2 14913
Description: Extract two adjacent symbols from a word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
swrds2 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩)

Proof of Theorem swrds2
StepHypRef Expression
1 df-s2 14821 . . 3 ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩ = (⟨“(𝑊𝐼)”⟩ ++ ⟨“(𝑊‘(𝐼 + 1))”⟩)
2 simp1 1136 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝐴)
3 simp2 1137 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℕ0)
4 elfzo0 13668 . . . . . . . 8 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) ↔ ((𝐼 + 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝐼 + 1) < (♯‘𝑊)))
54simp2bi 1146 . . . . . . 7 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
653ad2ant3 1135 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
73nn0red 12511 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℝ)
8 peano2nn0 12489 . . . . . . . . 9 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
93, 8syl 17 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ ℕ0)
109nn0red 12511 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ ℝ)
116nnred 12208 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℝ)
127lep1d 12121 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ≤ (𝐼 + 1))
13 elfzolt2 13636 . . . . . . . 8 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) → (𝐼 + 1) < (♯‘𝑊))
14133ad2ant3 1135 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) < (♯‘𝑊))
157, 10, 11, 12, 14lelttrd 11339 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 < (♯‘𝑊))
16 elfzo0 13668 . . . . . 6 (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)))
173, 6, 15, 16syl3anbrc 1344 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (0..^(♯‘𝑊)))
18 swrds1 14638 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)
192, 17, 18syl2anc 584 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)
20 nn0cn 12459 . . . . . . . . 9 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
21203ad2ant2 1134 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℂ)
22 df-2 12256 . . . . . . . . . 10 2 = (1 + 1)
2322oveq2i 7401 . . . . . . . . 9 (𝐼 + 2) = (𝐼 + (1 + 1))
24 ax-1cn 11133 . . . . . . . . . 10 1 ∈ ℂ
25 addass 11162 . . . . . . . . . 10 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐼 + 1) + 1) = (𝐼 + (1 + 1)))
2624, 24, 25mp3an23 1455 . . . . . . . . 9 (𝐼 ∈ ℂ → ((𝐼 + 1) + 1) = (𝐼 + (1 + 1)))
2723, 26eqtr4id 2784 . . . . . . . 8 (𝐼 ∈ ℂ → (𝐼 + 2) = ((𝐼 + 1) + 1))
2821, 27syl 17 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 2) = ((𝐼 + 1) + 1))
2928opeq2d 4847 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ⟨(𝐼 + 1), (𝐼 + 2)⟩ = ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩)
3029oveq2d 7406 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩) = (𝑊 substr ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩))
31 swrds1 14638 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩) = ⟨“(𝑊‘(𝐼 + 1))”⟩)
32313adant2 1131 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩) = ⟨“(𝑊‘(𝐼 + 1))”⟩)
3330, 32eqtrd 2765 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩) = ⟨“(𝑊‘(𝐼 + 1))”⟩)
3419, 33oveq12d 7408 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)) = (⟨“(𝑊𝐼)”⟩ ++ ⟨“(𝑊‘(𝐼 + 1))”⟩))
351, 34eqtr4id 2784 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩ = ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)))
36 elfz2nn0 13586 . . . 4 (𝐼 ∈ (0...(𝐼 + 1)) ↔ (𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ ℕ0𝐼 ≤ (𝐼 + 1)))
373, 9, 12, 36syl3anbrc 1344 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (0...(𝐼 + 1)))
38 peano2nn0 12489 . . . . . 6 ((𝐼 + 1) ∈ ℕ0 → ((𝐼 + 1) + 1) ∈ ℕ0)
399, 38syl 17 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝐼 + 1) + 1) ∈ ℕ0)
4028, 39eqeltrd 2829 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 2) ∈ ℕ0)
4110lep1d 12121 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ≤ ((𝐼 + 1) + 1))
4241, 28breqtrrd 5138 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ≤ (𝐼 + 2))
43 elfz2nn0 13586 . . . 4 ((𝐼 + 1) ∈ (0...(𝐼 + 2)) ↔ ((𝐼 + 1) ∈ ℕ0 ∧ (𝐼 + 2) ∈ ℕ0 ∧ (𝐼 + 1) ≤ (𝐼 + 2)))
449, 40, 42, 43syl3anbrc 1344 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ (0...(𝐼 + 2)))
45 fzofzp1 13732 . . . . 5 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) → ((𝐼 + 1) + 1) ∈ (0...(♯‘𝑊)))
46453ad2ant3 1135 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝐼 + 1) + 1) ∈ (0...(♯‘𝑊)))
4728, 46eqeltrd 2829 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 2) ∈ (0...(♯‘𝑊)))
48 ccatswrd 14640 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝐼 ∈ (0...(𝐼 + 1)) ∧ (𝐼 + 1) ∈ (0...(𝐼 + 2)) ∧ (𝐼 + 2) ∈ (0...(♯‘𝑊)))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)) = (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩))
492, 37, 44, 47, 48syl13anc 1374 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)) = (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩))
5035, 49eqtr2d 2766 1 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cop 4598   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cn 12193  2c2 12248  0cn0 12449  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485   ++ cconcat 14542  ⟨“cs1 14567   substr csubstr 14612  ⟨“cs2 14814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-substr 14613  df-s2 14821
This theorem is referenced by:  swrds2m  14914  swrd2lsw  14925  psgnunilem2  19432
  Copyright terms: Public domain W3C validator