MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrds2 Structured version   Visualization version   GIF version

Theorem swrds2 14581
Description: Extract two adjacent symbols from a word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
swrds2 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩)

Proof of Theorem swrds2
StepHypRef Expression
1 df-s2 14489 . . 3 ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩ = (⟨“(𝑊𝐼)”⟩ ++ ⟨“(𝑊‘(𝐼 + 1))”⟩)
2 simp1 1134 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝐴)
3 simp2 1135 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℕ0)
4 elfzo0 13356 . . . . . . . 8 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) ↔ ((𝐼 + 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝐼 + 1) < (♯‘𝑊)))
54simp2bi 1144 . . . . . . 7 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
653ad2ant3 1133 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
73nn0red 12224 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℝ)
8 peano2nn0 12203 . . . . . . . . 9 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
93, 8syl 17 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ ℕ0)
109nn0red 12224 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ ℝ)
116nnred 11918 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℝ)
127lep1d 11836 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ≤ (𝐼 + 1))
13 elfzolt2 13325 . . . . . . . 8 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) → (𝐼 + 1) < (♯‘𝑊))
14133ad2ant3 1133 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) < (♯‘𝑊))
157, 10, 11, 12, 14lelttrd 11063 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 < (♯‘𝑊))
16 elfzo0 13356 . . . . . 6 (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)))
173, 6, 15, 16syl3anbrc 1341 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (0..^(♯‘𝑊)))
18 swrds1 14307 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)
192, 17, 18syl2anc 583 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)
20 nn0cn 12173 . . . . . . . . 9 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
21203ad2ant2 1132 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℂ)
22 df-2 11966 . . . . . . . . . 10 2 = (1 + 1)
2322oveq2i 7266 . . . . . . . . 9 (𝐼 + 2) = (𝐼 + (1 + 1))
24 ax-1cn 10860 . . . . . . . . . 10 1 ∈ ℂ
25 addass 10889 . . . . . . . . . 10 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐼 + 1) + 1) = (𝐼 + (1 + 1)))
2624, 24, 25mp3an23 1451 . . . . . . . . 9 (𝐼 ∈ ℂ → ((𝐼 + 1) + 1) = (𝐼 + (1 + 1)))
2723, 26eqtr4id 2798 . . . . . . . 8 (𝐼 ∈ ℂ → (𝐼 + 2) = ((𝐼 + 1) + 1))
2821, 27syl 17 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 2) = ((𝐼 + 1) + 1))
2928opeq2d 4808 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ⟨(𝐼 + 1), (𝐼 + 2)⟩ = ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩)
3029oveq2d 7271 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩) = (𝑊 substr ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩))
31 swrds1 14307 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩) = ⟨“(𝑊‘(𝐼 + 1))”⟩)
32313adant2 1129 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩) = ⟨“(𝑊‘(𝐼 + 1))”⟩)
3330, 32eqtrd 2778 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩) = ⟨“(𝑊‘(𝐼 + 1))”⟩)
3419, 33oveq12d 7273 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)) = (⟨“(𝑊𝐼)”⟩ ++ ⟨“(𝑊‘(𝐼 + 1))”⟩))
351, 34eqtr4id 2798 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩ = ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)))
36 elfz2nn0 13276 . . . 4 (𝐼 ∈ (0...(𝐼 + 1)) ↔ (𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ ℕ0𝐼 ≤ (𝐼 + 1)))
373, 9, 12, 36syl3anbrc 1341 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (0...(𝐼 + 1)))
38 peano2nn0 12203 . . . . . 6 ((𝐼 + 1) ∈ ℕ0 → ((𝐼 + 1) + 1) ∈ ℕ0)
399, 38syl 17 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝐼 + 1) + 1) ∈ ℕ0)
4028, 39eqeltrd 2839 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 2) ∈ ℕ0)
4110lep1d 11836 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ≤ ((𝐼 + 1) + 1))
4241, 28breqtrrd 5098 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ≤ (𝐼 + 2))
43 elfz2nn0 13276 . . . 4 ((𝐼 + 1) ∈ (0...(𝐼 + 2)) ↔ ((𝐼 + 1) ∈ ℕ0 ∧ (𝐼 + 2) ∈ ℕ0 ∧ (𝐼 + 1) ≤ (𝐼 + 2)))
449, 40, 42, 43syl3anbrc 1341 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ (0...(𝐼 + 2)))
45 fzofzp1 13412 . . . . 5 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) → ((𝐼 + 1) + 1) ∈ (0...(♯‘𝑊)))
46453ad2ant3 1133 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝐼 + 1) + 1) ∈ (0...(♯‘𝑊)))
4728, 46eqeltrd 2839 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 2) ∈ (0...(♯‘𝑊)))
48 ccatswrd 14309 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝐼 ∈ (0...(𝐼 + 1)) ∧ (𝐼 + 1) ∈ (0...(𝐼 + 2)) ∧ (𝐼 + 2) ∈ (0...(♯‘𝑊)))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)) = (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩))
492, 37, 44, 47, 48syl13anc 1370 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)) = (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩))
5035, 49eqtr2d 2779 1 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  cop 4564   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cn 11903  2c2 11958  0cn0 12163  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   ++ cconcat 14201  ⟨“cs1 14228   substr csubstr 14281  ⟨“cs2 14482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-substr 14282  df-s2 14489
This theorem is referenced by:  swrds2m  14582  swrd2lsw  14593  psgnunilem2  19018
  Copyright terms: Public domain W3C validator