Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrds2 Structured version   Visualization version   GIF version

Theorem swrds2 14349
 Description: Extract two adjacent symbols from a word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
swrds2 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩)

Proof of Theorem swrds2
StepHypRef Expression
1 df-s2 14257 . . 3 ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩ = (⟨“(𝑊𝐼)”⟩ ++ ⟨“(𝑊‘(𝐼 + 1))”⟩)
2 simp1 1133 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝐴)
3 simp2 1134 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℕ0)
4 elfzo0 13127 . . . . . . . 8 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) ↔ ((𝐼 + 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝐼 + 1) < (♯‘𝑊)))
54simp2bi 1143 . . . . . . 7 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
653ad2ant3 1132 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
73nn0red 11995 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℝ)
8 peano2nn0 11974 . . . . . . . . 9 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
93, 8syl 17 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ ℕ0)
109nn0red 11995 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ ℝ)
116nnred 11689 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℝ)
127lep1d 11609 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ≤ (𝐼 + 1))
13 elfzolt2 13096 . . . . . . . 8 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) → (𝐼 + 1) < (♯‘𝑊))
14133ad2ant3 1132 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) < (♯‘𝑊))
157, 10, 11, 12, 14lelttrd 10836 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 < (♯‘𝑊))
16 elfzo0 13127 . . . . . 6 (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)))
173, 6, 15, 16syl3anbrc 1340 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (0..^(♯‘𝑊)))
18 swrds1 14075 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)
192, 17, 18syl2anc 587 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)
20 nn0cn 11944 . . . . . . . . 9 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
21203ad2ant2 1131 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℂ)
22 df-2 11737 . . . . . . . . . 10 2 = (1 + 1)
2322oveq2i 7161 . . . . . . . . 9 (𝐼 + 2) = (𝐼 + (1 + 1))
24 ax-1cn 10633 . . . . . . . . . 10 1 ∈ ℂ
25 addass 10662 . . . . . . . . . 10 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐼 + 1) + 1) = (𝐼 + (1 + 1)))
2624, 24, 25mp3an23 1450 . . . . . . . . 9 (𝐼 ∈ ℂ → ((𝐼 + 1) + 1) = (𝐼 + (1 + 1)))
2723, 26eqtr4id 2812 . . . . . . . 8 (𝐼 ∈ ℂ → (𝐼 + 2) = ((𝐼 + 1) + 1))
2821, 27syl 17 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 2) = ((𝐼 + 1) + 1))
2928opeq2d 4770 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ⟨(𝐼 + 1), (𝐼 + 2)⟩ = ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩)
3029oveq2d 7166 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩) = (𝑊 substr ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩))
31 swrds1 14075 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩) = ⟨“(𝑊‘(𝐼 + 1))”⟩)
32313adant2 1128 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩) = ⟨“(𝑊‘(𝐼 + 1))”⟩)
3330, 32eqtrd 2793 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩) = ⟨“(𝑊‘(𝐼 + 1))”⟩)
3419, 33oveq12d 7168 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)) = (⟨“(𝑊𝐼)”⟩ ++ ⟨“(𝑊‘(𝐼 + 1))”⟩))
351, 34eqtr4id 2812 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩ = ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)))
36 elfz2nn0 13047 . . . 4 (𝐼 ∈ (0...(𝐼 + 1)) ↔ (𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ ℕ0𝐼 ≤ (𝐼 + 1)))
373, 9, 12, 36syl3anbrc 1340 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (0...(𝐼 + 1)))
38 peano2nn0 11974 . . . . . 6 ((𝐼 + 1) ∈ ℕ0 → ((𝐼 + 1) + 1) ∈ ℕ0)
399, 38syl 17 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝐼 + 1) + 1) ∈ ℕ0)
4028, 39eqeltrd 2852 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 2) ∈ ℕ0)
4110lep1d 11609 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ≤ ((𝐼 + 1) + 1))
4241, 28breqtrrd 5060 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ≤ (𝐼 + 2))
43 elfz2nn0 13047 . . . 4 ((𝐼 + 1) ∈ (0...(𝐼 + 2)) ↔ ((𝐼 + 1) ∈ ℕ0 ∧ (𝐼 + 2) ∈ ℕ0 ∧ (𝐼 + 1) ≤ (𝐼 + 2)))
449, 40, 42, 43syl3anbrc 1340 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ (0...(𝐼 + 2)))
45 fzofzp1 13183 . . . . 5 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) → ((𝐼 + 1) + 1) ∈ (0...(♯‘𝑊)))
46453ad2ant3 1132 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝐼 + 1) + 1) ∈ (0...(♯‘𝑊)))
4728, 46eqeltrd 2852 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 2) ∈ (0...(♯‘𝑊)))
48 ccatswrd 14077 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝐼 ∈ (0...(𝐼 + 1)) ∧ (𝐼 + 1) ∈ (0...(𝐼 + 2)) ∧ (𝐼 + 2) ∈ (0...(♯‘𝑊)))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)) = (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩))
492, 37, 44, 47, 48syl13anc 1369 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)) = (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩))
5035, 49eqtr2d 2794 1 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ⟨cop 4528   class class class wbr 5032  ‘cfv 6335  (class class class)co 7150  ℂcc 10573  0cc0 10575  1c1 10576   + caddc 10578   < clt 10713   ≤ cle 10714  ℕcn 11674  2c2 11729  ℕ0cn0 11934  ...cfz 12939  ..^cfzo 13082  ♯chash 13740  Word cword 13913   ++ cconcat 13969  ⟨“cs1 13996   substr csubstr 14049  ⟨“cs2 14250 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-fzo 13083  df-hash 13741  df-word 13914  df-concat 13970  df-s1 13997  df-substr 14050  df-s2 14257 This theorem is referenced by:  swrds2m  14350  swrd2lsw  14361  psgnunilem2  18690
 Copyright terms: Public domain W3C validator