MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrds2 Structured version   Visualization version   GIF version

Theorem swrds2 14979
Description: Extract two adjacent symbols from a word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
swrds2 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩)

Proof of Theorem swrds2
StepHypRef Expression
1 df-s2 14887 . . 3 ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩ = (⟨“(𝑊𝐼)”⟩ ++ ⟨“(𝑊‘(𝐼 + 1))”⟩)
2 simp1 1137 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝐴)
3 simp2 1138 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℕ0)
4 elfzo0 13740 . . . . . . . 8 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) ↔ ((𝐼 + 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝐼 + 1) < (♯‘𝑊)))
54simp2bi 1147 . . . . . . 7 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
653ad2ant3 1136 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
73nn0red 12588 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℝ)
8 peano2nn0 12566 . . . . . . . . 9 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
93, 8syl 17 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ ℕ0)
109nn0red 12588 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ ℝ)
116nnred 12281 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℝ)
127lep1d 12199 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ≤ (𝐼 + 1))
13 elfzolt2 13708 . . . . . . . 8 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) → (𝐼 + 1) < (♯‘𝑊))
14133ad2ant3 1136 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) < (♯‘𝑊))
157, 10, 11, 12, 14lelttrd 11419 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 < (♯‘𝑊))
16 elfzo0 13740 . . . . . 6 (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)))
173, 6, 15, 16syl3anbrc 1344 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (0..^(♯‘𝑊)))
18 swrds1 14704 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)
192, 17, 18syl2anc 584 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)
20 nn0cn 12536 . . . . . . . . 9 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
21203ad2ant2 1135 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℂ)
22 df-2 12329 . . . . . . . . . 10 2 = (1 + 1)
2322oveq2i 7442 . . . . . . . . 9 (𝐼 + 2) = (𝐼 + (1 + 1))
24 ax-1cn 11213 . . . . . . . . . 10 1 ∈ ℂ
25 addass 11242 . . . . . . . . . 10 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐼 + 1) + 1) = (𝐼 + (1 + 1)))
2624, 24, 25mp3an23 1455 . . . . . . . . 9 (𝐼 ∈ ℂ → ((𝐼 + 1) + 1) = (𝐼 + (1 + 1)))
2723, 26eqtr4id 2796 . . . . . . . 8 (𝐼 ∈ ℂ → (𝐼 + 2) = ((𝐼 + 1) + 1))
2821, 27syl 17 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 2) = ((𝐼 + 1) + 1))
2928opeq2d 4880 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ⟨(𝐼 + 1), (𝐼 + 2)⟩ = ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩)
3029oveq2d 7447 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩) = (𝑊 substr ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩))
31 swrds1 14704 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩) = ⟨“(𝑊‘(𝐼 + 1))”⟩)
32313adant2 1132 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩) = ⟨“(𝑊‘(𝐼 + 1))”⟩)
3330, 32eqtrd 2777 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩) = ⟨“(𝑊‘(𝐼 + 1))”⟩)
3419, 33oveq12d 7449 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)) = (⟨“(𝑊𝐼)”⟩ ++ ⟨“(𝑊‘(𝐼 + 1))”⟩))
351, 34eqtr4id 2796 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩ = ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)))
36 elfz2nn0 13658 . . . 4 (𝐼 ∈ (0...(𝐼 + 1)) ↔ (𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ ℕ0𝐼 ≤ (𝐼 + 1)))
373, 9, 12, 36syl3anbrc 1344 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (0...(𝐼 + 1)))
38 peano2nn0 12566 . . . . . 6 ((𝐼 + 1) ∈ ℕ0 → ((𝐼 + 1) + 1) ∈ ℕ0)
399, 38syl 17 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝐼 + 1) + 1) ∈ ℕ0)
4028, 39eqeltrd 2841 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 2) ∈ ℕ0)
4110lep1d 12199 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ≤ ((𝐼 + 1) + 1))
4241, 28breqtrrd 5171 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ≤ (𝐼 + 2))
43 elfz2nn0 13658 . . . 4 ((𝐼 + 1) ∈ (0...(𝐼 + 2)) ↔ ((𝐼 + 1) ∈ ℕ0 ∧ (𝐼 + 2) ∈ ℕ0 ∧ (𝐼 + 1) ≤ (𝐼 + 2)))
449, 40, 42, 43syl3anbrc 1344 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ (0...(𝐼 + 2)))
45 fzofzp1 13803 . . . . 5 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) → ((𝐼 + 1) + 1) ∈ (0...(♯‘𝑊)))
46453ad2ant3 1136 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝐼 + 1) + 1) ∈ (0...(♯‘𝑊)))
4728, 46eqeltrd 2841 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 2) ∈ (0...(♯‘𝑊)))
48 ccatswrd 14706 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝐼 ∈ (0...(𝐼 + 1)) ∧ (𝐼 + 1) ∈ (0...(𝐼 + 2)) ∧ (𝐼 + 2) ∈ (0...(♯‘𝑊)))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)) = (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩))
492, 37, 44, 47, 48syl13anc 1374 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)) = (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩))
5035, 49eqtr2d 2778 1 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1540  wcel 2108  cop 4632   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cn 12266  2c2 12321  0cn0 12526  ...cfz 13547  ..^cfzo 13694  chash 14369  Word cword 14552   ++ cconcat 14608  ⟨“cs1 14633   substr csubstr 14678  ⟨“cs2 14880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-substr 14679  df-s2 14887
This theorem is referenced by:  swrds2m  14980  swrd2lsw  14991  psgnunilem2  19513
  Copyright terms: Public domain W3C validator