MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrds2 Structured version   Visualization version   GIF version

Theorem swrds2 14975
Description: Extract two adjacent symbols from a word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
swrds2 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩)

Proof of Theorem swrds2
StepHypRef Expression
1 df-s2 14883 . . 3 ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩ = (⟨“(𝑊𝐼)”⟩ ++ ⟨“(𝑊‘(𝐼 + 1))”⟩)
2 simp1 1135 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝐴)
3 simp2 1136 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℕ0)
4 elfzo0 13736 . . . . . . . 8 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) ↔ ((𝐼 + 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝐼 + 1) < (♯‘𝑊)))
54simp2bi 1145 . . . . . . 7 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
653ad2ant3 1134 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
73nn0red 12585 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℝ)
8 peano2nn0 12563 . . . . . . . . 9 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
93, 8syl 17 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ ℕ0)
109nn0red 12585 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ ℝ)
116nnred 12278 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℝ)
127lep1d 12196 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ≤ (𝐼 + 1))
13 elfzolt2 13704 . . . . . . . 8 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) → (𝐼 + 1) < (♯‘𝑊))
14133ad2ant3 1134 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) < (♯‘𝑊))
157, 10, 11, 12, 14lelttrd 11416 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 < (♯‘𝑊))
16 elfzo0 13736 . . . . . 6 (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)))
173, 6, 15, 16syl3anbrc 1342 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (0..^(♯‘𝑊)))
18 swrds1 14700 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)
192, 17, 18syl2anc 584 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)
20 nn0cn 12533 . . . . . . . . 9 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
21203ad2ant2 1133 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℂ)
22 df-2 12326 . . . . . . . . . 10 2 = (1 + 1)
2322oveq2i 7441 . . . . . . . . 9 (𝐼 + 2) = (𝐼 + (1 + 1))
24 ax-1cn 11210 . . . . . . . . . 10 1 ∈ ℂ
25 addass 11239 . . . . . . . . . 10 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐼 + 1) + 1) = (𝐼 + (1 + 1)))
2624, 24, 25mp3an23 1452 . . . . . . . . 9 (𝐼 ∈ ℂ → ((𝐼 + 1) + 1) = (𝐼 + (1 + 1)))
2723, 26eqtr4id 2793 . . . . . . . 8 (𝐼 ∈ ℂ → (𝐼 + 2) = ((𝐼 + 1) + 1))
2821, 27syl 17 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 2) = ((𝐼 + 1) + 1))
2928opeq2d 4884 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ⟨(𝐼 + 1), (𝐼 + 2)⟩ = ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩)
3029oveq2d 7446 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩) = (𝑊 substr ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩))
31 swrds1 14700 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩) = ⟨“(𝑊‘(𝐼 + 1))”⟩)
32313adant2 1130 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), ((𝐼 + 1) + 1)⟩) = ⟨“(𝑊‘(𝐼 + 1))”⟩)
3330, 32eqtrd 2774 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩) = ⟨“(𝑊‘(𝐼 + 1))”⟩)
3419, 33oveq12d 7448 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)) = (⟨“(𝑊𝐼)”⟩ ++ ⟨“(𝑊‘(𝐼 + 1))”⟩))
351, 34eqtr4id 2793 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩ = ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)))
36 elfz2nn0 13654 . . . 4 (𝐼 ∈ (0...(𝐼 + 1)) ↔ (𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ ℕ0𝐼 ≤ (𝐼 + 1)))
373, 9, 12, 36syl3anbrc 1342 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (0...(𝐼 + 1)))
38 peano2nn0 12563 . . . . . 6 ((𝐼 + 1) ∈ ℕ0 → ((𝐼 + 1) + 1) ∈ ℕ0)
399, 38syl 17 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝐼 + 1) + 1) ∈ ℕ0)
4028, 39eqeltrd 2838 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 2) ∈ ℕ0)
4110lep1d 12196 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ≤ ((𝐼 + 1) + 1))
4241, 28breqtrrd 5175 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ≤ (𝐼 + 2))
43 elfz2nn0 13654 . . . 4 ((𝐼 + 1) ∈ (0...(𝐼 + 2)) ↔ ((𝐼 + 1) ∈ ℕ0 ∧ (𝐼 + 2) ∈ ℕ0 ∧ (𝐼 + 1) ≤ (𝐼 + 2)))
449, 40, 42, 43syl3anbrc 1342 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ (0...(𝐼 + 2)))
45 fzofzp1 13799 . . . . 5 ((𝐼 + 1) ∈ (0..^(♯‘𝑊)) → ((𝐼 + 1) + 1) ∈ (0...(♯‘𝑊)))
46453ad2ant3 1134 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝐼 + 1) + 1) ∈ (0...(♯‘𝑊)))
4728, 46eqeltrd 2838 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝐼 + 2) ∈ (0...(♯‘𝑊)))
48 ccatswrd 14702 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝐼 ∈ (0...(𝐼 + 1)) ∧ (𝐼 + 1) ∈ (0...(𝐼 + 2)) ∧ (𝐼 + 2) ∈ (0...(♯‘𝑊)))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)) = (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩))
492, 37, 44, 47, 48syl13anc 1371 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ++ (𝑊 substr ⟨(𝐼 + 1), (𝐼 + 2)⟩)) = (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩))
5035, 49eqtr2d 2775 1 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1536  wcel 2105  cop 4636   class class class wbr 5147  cfv 6562  (class class class)co 7430  cc 11150  0cc0 11152  1c1 11153   + caddc 11155   < clt 11292  cle 11293  cn 12263  2c2 12318  0cn0 12523  ...cfz 13543  ..^cfzo 13690  chash 14365  Word cword 14548   ++ cconcat 14604  ⟨“cs1 14629   substr csubstr 14674  ⟨“cs2 14876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-hash 14366  df-word 14549  df-concat 14605  df-s1 14630  df-substr 14675  df-s2 14883
This theorem is referenced by:  swrds2m  14976  swrd2lsw  14987  psgnunilem2  19527
  Copyright terms: Public domain W3C validator