MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efginvrel2 Structured version   Visualization version   GIF version

Theorem efginvrel2 19333
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efginvrel2 (𝐴𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∅)
Distinct variable groups:   𝑦,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧   𝑛,𝑀,𝑣,𝑤   𝑛,𝑊,𝑣,𝑤,𝑦,𝑧   𝑦, ,𝑧   𝑛,𝐼,𝑣,𝑤,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)

Proof of Theorem efginvrel2
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6845 . . . 4 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 3955 . . 3 𝑊 ⊆ Word (𝐼 × 2o)
43sseli 3917 . 2 (𝐴𝑊𝐴 ∈ Word (𝐼 × 2o))
5 id 22 . . . . . 6 (𝑐 = ∅ → 𝑐 = ∅)
6 fveq2 6774 . . . . . . . . 9 (𝑐 = ∅ → (reverse‘𝑐) = (reverse‘∅))
7 rev0 14477 . . . . . . . . 9 (reverse‘∅) = ∅
86, 7eqtrdi 2794 . . . . . . . 8 (𝑐 = ∅ → (reverse‘𝑐) = ∅)
98coeq2d 5771 . . . . . . 7 (𝑐 = ∅ → (𝑀 ∘ (reverse‘𝑐)) = (𝑀 ∘ ∅))
10 co02 6164 . . . . . . 7 (𝑀 ∘ ∅) = ∅
119, 10eqtrdi 2794 . . . . . 6 (𝑐 = ∅ → (𝑀 ∘ (reverse‘𝑐)) = ∅)
125, 11oveq12d 7293 . . . . 5 (𝑐 = ∅ → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) = (∅ ++ ∅))
1312breq1d 5084 . . . 4 (𝑐 = ∅ → ((𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∅ ↔ (∅ ++ ∅) ∅))
1413imbi2d 341 . . 3 (𝑐 = ∅ → ((𝐴𝑊 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∅) ↔ (𝐴𝑊 → (∅ ++ ∅) ∅)))
15 id 22 . . . . . 6 (𝑐 = 𝑎𝑐 = 𝑎)
16 fveq2 6774 . . . . . . 7 (𝑐 = 𝑎 → (reverse‘𝑐) = (reverse‘𝑎))
1716coeq2d 5771 . . . . . 6 (𝑐 = 𝑎 → (𝑀 ∘ (reverse‘𝑐)) = (𝑀 ∘ (reverse‘𝑎)))
1815, 17oveq12d 7293 . . . . 5 (𝑐 = 𝑎 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) = (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))
1918breq1d 5084 . . . 4 (𝑐 = 𝑎 → ((𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∅ ↔ (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∅))
2019imbi2d 341 . . 3 (𝑐 = 𝑎 → ((𝐴𝑊 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∅) ↔ (𝐴𝑊 → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∅)))
21 id 22 . . . . . 6 (𝑐 = (𝑎 ++ ⟨“𝑏”⟩) → 𝑐 = (𝑎 ++ ⟨“𝑏”⟩))
22 fveq2 6774 . . . . . . 7 (𝑐 = (𝑎 ++ ⟨“𝑏”⟩) → (reverse‘𝑐) = (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))
2322coeq2d 5771 . . . . . 6 (𝑐 = (𝑎 ++ ⟨“𝑏”⟩) → (𝑀 ∘ (reverse‘𝑐)) = (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩))))
2421, 23oveq12d 7293 . . . . 5 (𝑐 = (𝑎 ++ ⟨“𝑏”⟩) → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) = ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))))
2524breq1d 5084 . . . 4 (𝑐 = (𝑎 ++ ⟨“𝑏”⟩) → ((𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∅ ↔ ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) ∅))
2625imbi2d 341 . . 3 (𝑐 = (𝑎 ++ ⟨“𝑏”⟩) → ((𝐴𝑊 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∅) ↔ (𝐴𝑊 → ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) ∅)))
27 id 22 . . . . . 6 (𝑐 = 𝐴𝑐 = 𝐴)
28 fveq2 6774 . . . . . . 7 (𝑐 = 𝐴 → (reverse‘𝑐) = (reverse‘𝐴))
2928coeq2d 5771 . . . . . 6 (𝑐 = 𝐴 → (𝑀 ∘ (reverse‘𝑐)) = (𝑀 ∘ (reverse‘𝐴)))
3027, 29oveq12d 7293 . . . . 5 (𝑐 = 𝐴 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) = (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))))
3130breq1d 5084 . . . 4 (𝑐 = 𝐴 → ((𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∅ ↔ (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∅))
3231imbi2d 341 . . 3 (𝑐 = 𝐴 → ((𝐴𝑊 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∅) ↔ (𝐴𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∅)))
33 ccatidid 14295 . . . 4 (∅ ++ ∅) = ∅
34 efgval.r . . . . . . 7 = ( ~FG𝐼)
351, 34efger 19324 . . . . . 6 Er 𝑊
3635a1i 11 . . . . 5 (𝐴𝑊 Er 𝑊)
37 wrd0 14242 . . . . . 6 ∅ ∈ Word (𝐼 × 2o)
381efgrcl 19321 . . . . . . 7 (𝐴𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
3938simprd 496 . . . . . 6 (𝐴𝑊𝑊 = Word (𝐼 × 2o))
4037, 39eleqtrrid 2846 . . . . 5 (𝐴𝑊 → ∅ ∈ 𝑊)
4136, 40erref 8518 . . . 4 (𝐴𝑊 → ∅ ∅)
4233, 41eqbrtrid 5109 . . 3 (𝐴𝑊 → (∅ ++ ∅) ∅)
4335a1i 11 . . . . . . 7 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → Er 𝑊)
44 simprl 768 . . . . . . . . . 10 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ Word (𝐼 × 2o))
45 revcl 14474 . . . . . . . . . . . 12 (𝑎 ∈ Word (𝐼 × 2o) → (reverse‘𝑎) ∈ Word (𝐼 × 2o))
4645ad2antrl 725 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (reverse‘𝑎) ∈ Word (𝐼 × 2o))
47 efgval2.m . . . . . . . . . . . 12 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4847efgmf 19319 . . . . . . . . . . 11 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
49 wrdco 14544 . . . . . . . . . . 11 (((reverse‘𝑎) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘𝑎)) ∈ Word (𝐼 × 2o))
5046, 48, 49sylancl 586 . . . . . . . . . 10 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀 ∘ (reverse‘𝑎)) ∈ Word (𝐼 × 2o))
51 ccatcl 14277 . . . . . . . . . 10 ((𝑎 ∈ Word (𝐼 × 2o) ∧ (𝑀 ∘ (reverse‘𝑎)) ∈ Word (𝐼 × 2o)) → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ Word (𝐼 × 2o))
5244, 50, 51syl2anc 584 . . . . . . . . 9 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ Word (𝐼 × 2o))
5339adantr 481 . . . . . . . . 9 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑊 = Word (𝐼 × 2o))
5452, 53eleqtrrd 2842 . . . . . . . 8 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ 𝑊)
55 lencl 14236 . . . . . . . . . . . . . 14 (𝑎 ∈ Word (𝐼 × 2o) → (♯‘𝑎) ∈ ℕ0)
5655ad2antrl 725 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘𝑎) ∈ ℕ0)
57 nn0uz 12620 . . . . . . . . . . . . 13 0 = (ℤ‘0)
5856, 57eleqtrdi 2849 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘𝑎) ∈ (ℤ‘0))
59 ccatlen 14278 . . . . . . . . . . . . . 14 ((𝑎 ∈ Word (𝐼 × 2o) ∧ (𝑀 ∘ (reverse‘𝑎)) ∈ Word (𝐼 × 2o)) → (♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) = ((♯‘𝑎) + (♯‘(𝑀 ∘ (reverse‘𝑎)))))
6044, 50, 59syl2anc 584 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) = ((♯‘𝑎) + (♯‘(𝑀 ∘ (reverse‘𝑎)))))
6156nn0zd 12424 . . . . . . . . . . . . . . 15 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘𝑎) ∈ ℤ)
6261uzidd 12598 . . . . . . . . . . . . . 14 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘𝑎) ∈ (ℤ‘(♯‘𝑎)))
63 lencl 14236 . . . . . . . . . . . . . . 15 ((𝑀 ∘ (reverse‘𝑎)) ∈ Word (𝐼 × 2o) → (♯‘(𝑀 ∘ (reverse‘𝑎))) ∈ ℕ0)
6450, 63syl 17 . . . . . . . . . . . . . 14 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘(𝑀 ∘ (reverse‘𝑎))) ∈ ℕ0)
65 uzaddcl 12644 . . . . . . . . . . . . . 14 (((♯‘𝑎) ∈ (ℤ‘(♯‘𝑎)) ∧ (♯‘(𝑀 ∘ (reverse‘𝑎))) ∈ ℕ0) → ((♯‘𝑎) + (♯‘(𝑀 ∘ (reverse‘𝑎)))) ∈ (ℤ‘(♯‘𝑎)))
6662, 64, 65syl2anc 584 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((♯‘𝑎) + (♯‘(𝑀 ∘ (reverse‘𝑎)))) ∈ (ℤ‘(♯‘𝑎)))
6760, 66eqeltrd 2839 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) ∈ (ℤ‘(♯‘𝑎)))
68 elfzuzb 13250 . . . . . . . . . . . 12 ((♯‘𝑎) ∈ (0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) ↔ ((♯‘𝑎) ∈ (ℤ‘0) ∧ (♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) ∈ (ℤ‘(♯‘𝑎))))
6958, 67, 68sylanbrc 583 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘𝑎) ∈ (0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))))
70 simprr 770 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑏 ∈ (𝐼 × 2o))
71 efgval2.t . . . . . . . . . . . 12 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
721, 34, 47, 71efgtval 19329 . . . . . . . . . . 11 (((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ 𝑊 ∧ (♯‘𝑎) ∈ (0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) ∧ 𝑏 ∈ (𝐼 × 2o)) → ((♯‘𝑎)(𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))𝑏) = ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) splice ⟨(♯‘𝑎), (♯‘𝑎), ⟨“𝑏(𝑀𝑏)”⟩⟩))
7354, 69, 70, 72syl3anc 1370 . . . . . . . . . 10 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((♯‘𝑎)(𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))𝑏) = ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) splice ⟨(♯‘𝑎), (♯‘𝑎), ⟨“𝑏(𝑀𝑏)”⟩⟩))
7437a1i 11 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ∅ ∈ Word (𝐼 × 2o))
7548ffvelrni 6960 . . . . . . . . . . . . 13 (𝑏 ∈ (𝐼 × 2o) → (𝑀𝑏) ∈ (𝐼 × 2o))
7675ad2antll 726 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀𝑏) ∈ (𝐼 × 2o))
7770, 76s2cld 14584 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o))
78 ccatrid 14292 . . . . . . . . . . . . . 14 (𝑎 ∈ Word (𝐼 × 2o) → (𝑎 ++ ∅) = 𝑎)
7978ad2antrl 725 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ ∅) = 𝑎)
8079eqcomd 2744 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 = (𝑎 ++ ∅))
8180oveq1d 7290 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) = ((𝑎 ++ ∅) ++ (𝑀 ∘ (reverse‘𝑎))))
82 eqidd 2739 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘𝑎) = (♯‘𝑎))
83 hash0 14082 . . . . . . . . . . . . 13 (♯‘∅) = 0
8483oveq2i 7286 . . . . . . . . . . . 12 ((♯‘𝑎) + (♯‘∅)) = ((♯‘𝑎) + 0)
8556nn0cnd 12295 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘𝑎) ∈ ℂ)
8685addid1d 11175 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((♯‘𝑎) + 0) = (♯‘𝑎))
8784, 86eqtr2id 2791 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘𝑎) = ((♯‘𝑎) + (♯‘∅)))
8844, 74, 50, 77, 81, 82, 87splval2 14470 . . . . . . . . . 10 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) splice ⟨(♯‘𝑎), (♯‘𝑎), ⟨“𝑏(𝑀𝑏)”⟩⟩) = ((𝑎 ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ (𝑀 ∘ (reverse‘𝑎))))
8970s1cld 14308 . . . . . . . . . . . . . . . 16 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ⟨“𝑏”⟩ ∈ Word (𝐼 × 2o))
90 revccat 14479 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ Word (𝐼 × 2o) ∧ ⟨“𝑏”⟩ ∈ Word (𝐼 × 2o)) → (reverse‘(𝑎 ++ ⟨“𝑏”⟩)) = ((reverse‘⟨“𝑏”⟩) ++ (reverse‘𝑎)))
9144, 89, 90syl2anc 584 . . . . . . . . . . . . . . 15 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (reverse‘(𝑎 ++ ⟨“𝑏”⟩)) = ((reverse‘⟨“𝑏”⟩) ++ (reverse‘𝑎)))
92 revs1 14478 . . . . . . . . . . . . . . . 16 (reverse‘⟨“𝑏”⟩) = ⟨“𝑏”⟩
9392oveq1i 7285 . . . . . . . . . . . . . . 15 ((reverse‘⟨“𝑏”⟩) ++ (reverse‘𝑎)) = (⟨“𝑏”⟩ ++ (reverse‘𝑎))
9491, 93eqtrdi 2794 . . . . . . . . . . . . . 14 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (reverse‘(𝑎 ++ ⟨“𝑏”⟩)) = (⟨“𝑏”⟩ ++ (reverse‘𝑎)))
9594coeq2d 5771 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩))) = (𝑀 ∘ (⟨“𝑏”⟩ ++ (reverse‘𝑎))))
9648a1i 11 . . . . . . . . . . . . . 14 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o))
97 ccatco 14548 . . . . . . . . . . . . . 14 ((⟨“𝑏”⟩ ∈ Word (𝐼 × 2o) ∧ (reverse‘𝑎) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (⟨“𝑏”⟩ ++ (reverse‘𝑎))) = ((𝑀 ∘ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘𝑎))))
9889, 46, 96, 97syl3anc 1370 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀 ∘ (⟨“𝑏”⟩ ++ (reverse‘𝑎))) = ((𝑀 ∘ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘𝑎))))
99 s1co 14546 . . . . . . . . . . . . . . 15 ((𝑏 ∈ (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ ⟨“𝑏”⟩) = ⟨“(𝑀𝑏)”⟩)
10070, 48, 99sylancl 586 . . . . . . . . . . . . . 14 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀 ∘ ⟨“𝑏”⟩) = ⟨“(𝑀𝑏)”⟩)
101100oveq1d 7290 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑀 ∘ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘𝑎))) = (⟨“(𝑀𝑏)”⟩ ++ (𝑀 ∘ (reverse‘𝑎))))
10295, 98, 1013eqtrd 2782 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩))) = (⟨“(𝑀𝑏)”⟩ ++ (𝑀 ∘ (reverse‘𝑎))))
103102oveq2d 7291 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) = ((𝑎 ++ ⟨“𝑏”⟩) ++ (⟨“(𝑀𝑏)”⟩ ++ (𝑀 ∘ (reverse‘𝑎)))))
104 ccatcl 14277 . . . . . . . . . . . . 13 ((𝑎 ∈ Word (𝐼 × 2o) ∧ ⟨“𝑏”⟩ ∈ Word (𝐼 × 2o)) → (𝑎 ++ ⟨“𝑏”⟩) ∈ Word (𝐼 × 2o))
10544, 89, 104syl2anc 584 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ ⟨“𝑏”⟩) ∈ Word (𝐼 × 2o))
10676s1cld 14308 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ⟨“(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o))
107 ccatass 14293 . . . . . . . . . . . 12 (((𝑎 ++ ⟨“𝑏”⟩) ∈ Word (𝐼 × 2o) ∧ ⟨“(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o) ∧ (𝑀 ∘ (reverse‘𝑎)) ∈ Word (𝐼 × 2o)) → (((𝑎 ++ ⟨“𝑏”⟩) ++ ⟨“(𝑀𝑏)”⟩) ++ (𝑀 ∘ (reverse‘𝑎))) = ((𝑎 ++ ⟨“𝑏”⟩) ++ (⟨“(𝑀𝑏)”⟩ ++ (𝑀 ∘ (reverse‘𝑎)))))
108105, 106, 50, 107syl3anc 1370 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (((𝑎 ++ ⟨“𝑏”⟩) ++ ⟨“(𝑀𝑏)”⟩) ++ (𝑀 ∘ (reverse‘𝑎))) = ((𝑎 ++ ⟨“𝑏”⟩) ++ (⟨“(𝑀𝑏)”⟩ ++ (𝑀 ∘ (reverse‘𝑎)))))
109 ccatass 14293 . . . . . . . . . . . . . 14 ((𝑎 ∈ Word (𝐼 × 2o) ∧ ⟨“𝑏”⟩ ∈ Word (𝐼 × 2o) ∧ ⟨“(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o)) → ((𝑎 ++ ⟨“𝑏”⟩) ++ ⟨“(𝑀𝑏)”⟩) = (𝑎 ++ (⟨“𝑏”⟩ ++ ⟨“(𝑀𝑏)”⟩)))
11044, 89, 106, 109syl3anc 1370 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ ⟨“𝑏”⟩) ++ ⟨“(𝑀𝑏)”⟩) = (𝑎 ++ (⟨“𝑏”⟩ ++ ⟨“(𝑀𝑏)”⟩)))
111 df-s2 14561 . . . . . . . . . . . . . 14 ⟨“𝑏(𝑀𝑏)”⟩ = (⟨“𝑏”⟩ ++ ⟨“(𝑀𝑏)”⟩)
112111oveq2i 7286 . . . . . . . . . . . . 13 (𝑎 ++ ⟨“𝑏(𝑀𝑏)”⟩) = (𝑎 ++ (⟨“𝑏”⟩ ++ ⟨“(𝑀𝑏)”⟩))
113110, 112eqtr4di 2796 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ ⟨“𝑏”⟩) ++ ⟨“(𝑀𝑏)”⟩) = (𝑎 ++ ⟨“𝑏(𝑀𝑏)”⟩))
114113oveq1d 7290 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (((𝑎 ++ ⟨“𝑏”⟩) ++ ⟨“(𝑀𝑏)”⟩) ++ (𝑀 ∘ (reverse‘𝑎))) = ((𝑎 ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ (𝑀 ∘ (reverse‘𝑎))))
115103, 108, 1143eqtr2rd 2785 . . . . . . . . . 10 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ (𝑀 ∘ (reverse‘𝑎))) = ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))))
11673, 88, 1153eqtrd 2782 . . . . . . . . 9 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((♯‘𝑎)(𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))𝑏) = ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))))
1171, 34, 47, 71efgtf 19328 . . . . . . . . . . . . 13 ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ 𝑊 → ((𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) = (𝑚 ∈ (0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))), 𝑢 ∈ (𝐼 × 2o) ↦ ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)) ∧ (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))):((0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) × (𝐼 × 2o))⟶𝑊))
118117simprd 496 . . . . . . . . . . . 12 ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ 𝑊 → (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))):((0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) × (𝐼 × 2o))⟶𝑊)
11954, 118syl 17 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))):((0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) × (𝐼 × 2o))⟶𝑊)
120119ffnd 6601 . . . . . . . . . 10 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) Fn ((0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) × (𝐼 × 2o)))
121 fnovrn 7447 . . . . . . . . . 10 (((𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) Fn ((0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) × (𝐼 × 2o)) ∧ (♯‘𝑎) ∈ (0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) ∧ 𝑏 ∈ (𝐼 × 2o)) → ((♯‘𝑎)(𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))𝑏) ∈ ran (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))))
122120, 69, 70, 121syl3anc 1370 . . . . . . . . 9 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((♯‘𝑎)(𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))𝑏) ∈ ran (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))))
123116, 122eqeltrrd 2840 . . . . . . . 8 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) ∈ ran (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))))
1241, 34, 47, 71efgi2 19331 . . . . . . . 8 (((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ 𝑊 ∧ ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) ∈ ran (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))))
12554, 123, 124syl2anc 584 . . . . . . 7 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))))
12643, 125ersym 8510 . . . . . 6 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))
12743ertr 8513 . . . . . 6 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∧ (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∅) → ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) ∅))
128126, 127mpand 692 . . . . 5 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∅ → ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) ∅))
129128expcom 414 . . . 4 ((𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o)) → (𝐴𝑊 → ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∅ → ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) ∅)))
130129a2d 29 . . 3 ((𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o)) → ((𝐴𝑊 → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∅) → (𝐴𝑊 → ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) ∅)))
13114, 20, 26, 32, 42, 130wrdind 14435 . 2 (𝐴 ∈ Word (𝐼 × 2o) → (𝐴𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∅))
1324, 131mpcom 38 1 (𝐴𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  c0 4256  cop 4567  cotp 4569   class class class wbr 5074  cmpt 5157   I cid 5488   × cxp 5587  ran crn 5590  ccom 5593   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  1oc1o 8290  2oc2o 8291   Er wer 8495  0cc0 10871   + caddc 10874  0cn0 12233  cuz 12582  ...cfz 13239  chash 14044  Word cword 14217   ++ cconcat 14273  ⟨“cs1 14300   splice csplice 14462  reversecreverse 14471  ⟨“cs2 14554   ~FG cefg 19312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-ec 8500  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-splice 14463  df-reverse 14472  df-s2 14561  df-efg 19315
This theorem is referenced by:  efginvrel1  19334  frgpinv  19370
  Copyright terms: Public domain W3C validator