| Step | Hyp | Ref
| Expression |
| 1 | | efgval.w |
. . . 4
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
| 2 | | fviss 6986 |
. . . 4
⊢ ( I
‘Word (𝐼 ×
2o)) ⊆ Word (𝐼 × 2o) |
| 3 | 1, 2 | eqsstri 4030 |
. . 3
⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
| 4 | 3 | sseli 3979 |
. 2
⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ Word (𝐼 × 2o)) |
| 5 | | id 22 |
. . . . . 6
⊢ (𝑐 = ∅ → 𝑐 = ∅) |
| 6 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑐 = ∅ →
(reverse‘𝑐) =
(reverse‘∅)) |
| 7 | | rev0 14802 |
. . . . . . . . 9
⊢
(reverse‘∅) = ∅ |
| 8 | 6, 7 | eqtrdi 2793 |
. . . . . . . 8
⊢ (𝑐 = ∅ →
(reverse‘𝑐) =
∅) |
| 9 | 8 | coeq2d 5873 |
. . . . . . 7
⊢ (𝑐 = ∅ → (𝑀 ∘ (reverse‘𝑐)) = (𝑀 ∘ ∅)) |
| 10 | | co02 6280 |
. . . . . . 7
⊢ (𝑀 ∘ ∅) =
∅ |
| 11 | 9, 10 | eqtrdi 2793 |
. . . . . 6
⊢ (𝑐 = ∅ → (𝑀 ∘ (reverse‘𝑐)) = ∅) |
| 12 | 5, 11 | oveq12d 7449 |
. . . . 5
⊢ (𝑐 = ∅ → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) = (∅ ++ ∅)) |
| 13 | 12 | breq1d 5153 |
. . . 4
⊢ (𝑐 = ∅ → ((𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∼ ∅ ↔
(∅ ++ ∅) ∼
∅)) |
| 14 | 13 | imbi2d 340 |
. . 3
⊢ (𝑐 = ∅ → ((𝐴 ∈ 𝑊 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∼ ∅) ↔
(𝐴 ∈ 𝑊 → (∅ ++ ∅) ∼
∅))) |
| 15 | | id 22 |
. . . . . 6
⊢ (𝑐 = 𝑎 → 𝑐 = 𝑎) |
| 16 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑐 = 𝑎 → (reverse‘𝑐) = (reverse‘𝑎)) |
| 17 | 16 | coeq2d 5873 |
. . . . . 6
⊢ (𝑐 = 𝑎 → (𝑀 ∘ (reverse‘𝑐)) = (𝑀 ∘ (reverse‘𝑎))) |
| 18 | 15, 17 | oveq12d 7449 |
. . . . 5
⊢ (𝑐 = 𝑎 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) = (𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) |
| 19 | 18 | breq1d 5153 |
. . . 4
⊢ (𝑐 = 𝑎 → ((𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∼ ∅ ↔
(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∼
∅)) |
| 20 | 19 | imbi2d 340 |
. . 3
⊢ (𝑐 = 𝑎 → ((𝐴 ∈ 𝑊 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∼ ∅) ↔
(𝐴 ∈ 𝑊 → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∼
∅))) |
| 21 | | id 22 |
. . . . . 6
⊢ (𝑐 = (𝑎 ++ 〈“𝑏”〉) → 𝑐 = (𝑎 ++ 〈“𝑏”〉)) |
| 22 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑐 = (𝑎 ++ 〈“𝑏”〉) → (reverse‘𝑐) = (reverse‘(𝑎 ++ 〈“𝑏”〉))) |
| 23 | 22 | coeq2d 5873 |
. . . . . 6
⊢ (𝑐 = (𝑎 ++ 〈“𝑏”〉) → (𝑀 ∘ (reverse‘𝑐)) = (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉)))) |
| 24 | 21, 23 | oveq12d 7449 |
. . . . 5
⊢ (𝑐 = (𝑎 ++ 〈“𝑏”〉) → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) = ((𝑎 ++ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉))))) |
| 25 | 24 | breq1d 5153 |
. . . 4
⊢ (𝑐 = (𝑎 ++ 〈“𝑏”〉) → ((𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∼ ∅ ↔
((𝑎 ++ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉)))) ∼
∅)) |
| 26 | 25 | imbi2d 340 |
. . 3
⊢ (𝑐 = (𝑎 ++ 〈“𝑏”〉) → ((𝐴 ∈ 𝑊 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∼ ∅) ↔
(𝐴 ∈ 𝑊 → ((𝑎 ++ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉)))) ∼
∅))) |
| 27 | | id 22 |
. . . . . 6
⊢ (𝑐 = 𝐴 → 𝑐 = 𝐴) |
| 28 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑐 = 𝐴 → (reverse‘𝑐) = (reverse‘𝐴)) |
| 29 | 28 | coeq2d 5873 |
. . . . . 6
⊢ (𝑐 = 𝐴 → (𝑀 ∘ (reverse‘𝑐)) = (𝑀 ∘ (reverse‘𝐴))) |
| 30 | 27, 29 | oveq12d 7449 |
. . . . 5
⊢ (𝑐 = 𝐴 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) = (𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))) |
| 31 | 30 | breq1d 5153 |
. . . 4
⊢ (𝑐 = 𝐴 → ((𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∼ ∅ ↔
(𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∼
∅)) |
| 32 | 31 | imbi2d 340 |
. . 3
⊢ (𝑐 = 𝐴 → ((𝐴 ∈ 𝑊 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∼ ∅) ↔
(𝐴 ∈ 𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∼
∅))) |
| 33 | | ccatidid 14628 |
. . . 4
⊢ (∅
++ ∅) = ∅ |
| 34 | | efgval.r |
. . . . . . 7
⊢ ∼ = (
~FG ‘𝐼) |
| 35 | 1, 34 | efger 19736 |
. . . . . 6
⊢ ∼ Er
𝑊 |
| 36 | 35 | a1i 11 |
. . . . 5
⊢ (𝐴 ∈ 𝑊 → ∼ Er 𝑊) |
| 37 | | wrd0 14577 |
. . . . . 6
⊢ ∅
∈ Word (𝐼 ×
2o) |
| 38 | 1 | efgrcl 19733 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
| 39 | 38 | simprd 495 |
. . . . . 6
⊢ (𝐴 ∈ 𝑊 → 𝑊 = Word (𝐼 × 2o)) |
| 40 | 37, 39 | eleqtrrid 2848 |
. . . . 5
⊢ (𝐴 ∈ 𝑊 → ∅ ∈ 𝑊) |
| 41 | 36, 40 | erref 8765 |
. . . 4
⊢ (𝐴 ∈ 𝑊 → ∅ ∼
∅) |
| 42 | 33, 41 | eqbrtrid 5178 |
. . 3
⊢ (𝐴 ∈ 𝑊 → (∅ ++ ∅) ∼
∅) |
| 43 | 35 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ∼ Er
𝑊) |
| 44 | | simprl 771 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ Word (𝐼 × 2o)) |
| 45 | | revcl 14799 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ Word (𝐼 × 2o) →
(reverse‘𝑎) ∈
Word (𝐼 ×
2o)) |
| 46 | 45 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
(reverse‘𝑎) ∈
Word (𝐼 ×
2o)) |
| 47 | | efgval2.m |
. . . . . . . . . . . 12
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| 48 | 47 | efgmf 19731 |
. . . . . . . . . . 11
⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 ×
2o) |
| 49 | | wrdco 14870 |
. . . . . . . . . . 11
⊢
(((reverse‘𝑎)
∈ Word (𝐼 ×
2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) →
(𝑀 ∘
(reverse‘𝑎)) ∈
Word (𝐼 ×
2o)) |
| 50 | 46, 48, 49 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀 ∘ (reverse‘𝑎)) ∈ Word (𝐼 ×
2o)) |
| 51 | | ccatcl 14612 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ Word (𝐼 × 2o) ∧ (𝑀 ∘ (reverse‘𝑎)) ∈ Word (𝐼 × 2o)) →
(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ Word (𝐼 × 2o)) |
| 52 | 44, 50, 51 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ Word (𝐼 × 2o)) |
| 53 | 39 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑊 = Word (𝐼 × 2o)) |
| 54 | 52, 53 | eleqtrrd 2844 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ 𝑊) |
| 55 | | lencl 14571 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ Word (𝐼 × 2o) →
(♯‘𝑎) ∈
ℕ0) |
| 56 | 55 | ad2antrl 728 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
(♯‘𝑎) ∈
ℕ0) |
| 57 | | nn0uz 12920 |
. . . . . . . . . . . . 13
⊢
ℕ0 = (ℤ≥‘0) |
| 58 | 56, 57 | eleqtrdi 2851 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
(♯‘𝑎) ∈
(ℤ≥‘0)) |
| 59 | | ccatlen 14613 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ Word (𝐼 × 2o) ∧ (𝑀 ∘ (reverse‘𝑎)) ∈ Word (𝐼 × 2o)) →
(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) = ((♯‘𝑎) + (♯‘(𝑀 ∘ (reverse‘𝑎))))) |
| 60 | 44, 50, 59 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) = ((♯‘𝑎) + (♯‘(𝑀 ∘ (reverse‘𝑎))))) |
| 61 | 56 | nn0zd 12639 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
(♯‘𝑎) ∈
ℤ) |
| 62 | 61 | uzidd 12894 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
(♯‘𝑎) ∈
(ℤ≥‘(♯‘𝑎))) |
| 63 | | lencl 14571 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∘ (reverse‘𝑎)) ∈ Word (𝐼 × 2o) →
(♯‘(𝑀 ∘
(reverse‘𝑎))) ∈
ℕ0) |
| 64 | 50, 63 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
(♯‘(𝑀 ∘
(reverse‘𝑎))) ∈
ℕ0) |
| 65 | | uzaddcl 12946 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝑎)
∈ (ℤ≥‘(♯‘𝑎)) ∧ (♯‘(𝑀 ∘ (reverse‘𝑎))) ∈ ℕ0) →
((♯‘𝑎) +
(♯‘(𝑀 ∘
(reverse‘𝑎)))) ∈
(ℤ≥‘(♯‘𝑎))) |
| 66 | 62, 64, 65 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
((♯‘𝑎) +
(♯‘(𝑀 ∘
(reverse‘𝑎)))) ∈
(ℤ≥‘(♯‘𝑎))) |
| 67 | 60, 66 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) ∈
(ℤ≥‘(♯‘𝑎))) |
| 68 | | elfzuzb 13558 |
. . . . . . . . . . . 12
⊢
((♯‘𝑎)
∈ (0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) ↔ ((♯‘𝑎) ∈
(ℤ≥‘0) ∧ (♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) ∈
(ℤ≥‘(♯‘𝑎)))) |
| 69 | 58, 67, 68 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
(♯‘𝑎) ∈
(0...(♯‘(𝑎 ++
(𝑀 ∘
(reverse‘𝑎)))))) |
| 70 | | simprr 773 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑏 ∈ (𝐼 × 2o)) |
| 71 | | efgval2.t |
. . . . . . . . . . . 12
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| 72 | 1, 34, 47, 71 | efgtval 19741 |
. . . . . . . . . . 11
⊢ (((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ 𝑊 ∧ (♯‘𝑎) ∈ (0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) ∧ 𝑏 ∈ (𝐼 × 2o)) →
((♯‘𝑎)(𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))𝑏) = ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) splice 〈(♯‘𝑎), (♯‘𝑎), 〈“𝑏(𝑀‘𝑏)”〉〉)) |
| 73 | 54, 69, 70, 72 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
((♯‘𝑎)(𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))𝑏) = ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) splice 〈(♯‘𝑎), (♯‘𝑎), 〈“𝑏(𝑀‘𝑏)”〉〉)) |
| 74 | 37 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ∅
∈ Word (𝐼 ×
2o)) |
| 75 | 48 | ffvelcdmi 7103 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ (𝐼 × 2o) → (𝑀‘𝑏) ∈ (𝐼 × 2o)) |
| 76 | 75 | ad2antll 729 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀‘𝑏) ∈ (𝐼 × 2o)) |
| 77 | 70, 76 | s2cld 14910 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
〈“𝑏(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o)) |
| 78 | | ccatrid 14625 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ Word (𝐼 × 2o) → (𝑎 ++ ∅) = 𝑎) |
| 79 | 78 | ad2antrl 728 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ ∅) = 𝑎) |
| 80 | 79 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 = (𝑎 ++ ∅)) |
| 81 | 80 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) = ((𝑎 ++ ∅) ++ (𝑀 ∘ (reverse‘𝑎)))) |
| 82 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
(♯‘𝑎) =
(♯‘𝑎)) |
| 83 | | hash0 14406 |
. . . . . . . . . . . . 13
⊢
(♯‘∅) = 0 |
| 84 | 83 | oveq2i 7442 |
. . . . . . . . . . . 12
⊢
((♯‘𝑎) +
(♯‘∅)) = ((♯‘𝑎) + 0) |
| 85 | 56 | nn0cnd 12589 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
(♯‘𝑎) ∈
ℂ) |
| 86 | 85 | addridd 11461 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
((♯‘𝑎) + 0) =
(♯‘𝑎)) |
| 87 | 84, 86 | eqtr2id 2790 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
(♯‘𝑎) =
((♯‘𝑎) +
(♯‘∅))) |
| 88 | 44, 74, 50, 77, 81, 82, 87 | splval2 14795 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) splice 〈(♯‘𝑎), (♯‘𝑎), 〈“𝑏(𝑀‘𝑏)”〉〉) = ((𝑎 ++ 〈“𝑏(𝑀‘𝑏)”〉) ++ (𝑀 ∘ (reverse‘𝑎)))) |
| 89 | 70 | s1cld 14641 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
〈“𝑏”〉
∈ Word (𝐼 ×
2o)) |
| 90 | | revccat 14804 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ Word (𝐼 × 2o) ∧
〈“𝑏”〉
∈ Word (𝐼 ×
2o)) → (reverse‘(𝑎 ++ 〈“𝑏”〉)) =
((reverse‘〈“𝑏”〉) ++ (reverse‘𝑎))) |
| 91 | 44, 89, 90 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
(reverse‘(𝑎 ++
〈“𝑏”〉)) =
((reverse‘〈“𝑏”〉) ++ (reverse‘𝑎))) |
| 92 | | revs1 14803 |
. . . . . . . . . . . . . . . 16
⊢
(reverse‘〈“𝑏”〉) = 〈“𝑏”〉 |
| 93 | 92 | oveq1i 7441 |
. . . . . . . . . . . . . . 15
⊢
((reverse‘〈“𝑏”〉) ++ (reverse‘𝑎)) = (〈“𝑏”〉 ++
(reverse‘𝑎)) |
| 94 | 91, 93 | eqtrdi 2793 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
(reverse‘(𝑎 ++
〈“𝑏”〉)) = (〈“𝑏”〉 ++
(reverse‘𝑎))) |
| 95 | 94 | coeq2d 5873 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉))) = (𝑀 ∘ (〈“𝑏”〉 ++
(reverse‘𝑎)))) |
| 96 | 48 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑀:(𝐼 × 2o)⟶(𝐼 ×
2o)) |
| 97 | | ccatco 14874 |
. . . . . . . . . . . . . 14
⊢
((〈“𝑏”〉 ∈ Word (𝐼 × 2o) ∧
(reverse‘𝑎) ∈
Word (𝐼 ×
2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) →
(𝑀 ∘
(〈“𝑏”〉 ++ (reverse‘𝑎))) = ((𝑀 ∘ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘𝑎)))) |
| 98 | 89, 46, 96, 97 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀 ∘ (〈“𝑏”〉 ++
(reverse‘𝑎))) =
((𝑀 ∘
〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘𝑎)))) |
| 99 | | s1co 14872 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ∈ (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) →
(𝑀 ∘
〈“𝑏”〉) = 〈“(𝑀‘𝑏)”〉) |
| 100 | 70, 48, 99 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀 ∘ 〈“𝑏”〉) =
〈“(𝑀‘𝑏)”〉) |
| 101 | 100 | oveq1d 7446 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑀 ∘ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘𝑎))) = (〈“(𝑀‘𝑏)”〉 ++ (𝑀 ∘ (reverse‘𝑎)))) |
| 102 | 95, 98, 101 | 3eqtrd 2781 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉))) =
(〈“(𝑀‘𝑏)”〉 ++ (𝑀 ∘ (reverse‘𝑎)))) |
| 103 | 102 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉)))) = ((𝑎 ++ 〈“𝑏”〉) ++
(〈“(𝑀‘𝑏)”〉 ++ (𝑀 ∘ (reverse‘𝑎))))) |
| 104 | | ccatcl 14612 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ Word (𝐼 × 2o) ∧
〈“𝑏”〉
∈ Word (𝐼 ×
2o)) → (𝑎
++ 〈“𝑏”〉) ∈ Word (𝐼 × 2o)) |
| 105 | 44, 89, 104 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ 〈“𝑏”〉) ∈ Word
(𝐼 ×
2o)) |
| 106 | 76 | s1cld 14641 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
〈“(𝑀‘𝑏)”〉 ∈ Word
(𝐼 ×
2o)) |
| 107 | | ccatass 14626 |
. . . . . . . . . . . 12
⊢ (((𝑎 ++ 〈“𝑏”〉) ∈ Word
(𝐼 × 2o)
∧ 〈“(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o) ∧ (𝑀 ∘ (reverse‘𝑎)) ∈ Word (𝐼 × 2o)) →
(((𝑎 ++ 〈“𝑏”〉) ++
〈“(𝑀‘𝑏)”〉) ++ (𝑀 ∘ (reverse‘𝑎))) = ((𝑎 ++ 〈“𝑏”〉) ++ (〈“(𝑀‘𝑏)”〉 ++ (𝑀 ∘ (reverse‘𝑎))))) |
| 108 | 105, 106,
50, 107 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (((𝑎 ++ 〈“𝑏”〉) ++
〈“(𝑀‘𝑏)”〉) ++ (𝑀 ∘ (reverse‘𝑎))) = ((𝑎 ++ 〈“𝑏”〉) ++ (〈“(𝑀‘𝑏)”〉 ++ (𝑀 ∘ (reverse‘𝑎))))) |
| 109 | | ccatass 14626 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ Word (𝐼 × 2o) ∧
〈“𝑏”〉
∈ Word (𝐼 ×
2o) ∧ 〈“(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o)) → ((𝑎 ++ 〈“𝑏”〉) ++
〈“(𝑀‘𝑏)”〉) = (𝑎 ++ (〈“𝑏”〉 ++
〈“(𝑀‘𝑏)”〉))) |
| 110 | 44, 89, 106, 109 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ 〈“𝑏”〉) ++
〈“(𝑀‘𝑏)”〉) = (𝑎 ++ (〈“𝑏”〉 ++
〈“(𝑀‘𝑏)”〉))) |
| 111 | | df-s2 14887 |
. . . . . . . . . . . . . 14
⊢
〈“𝑏(𝑀‘𝑏)”〉 = (〈“𝑏”〉 ++
〈“(𝑀‘𝑏)”〉) |
| 112 | 111 | oveq2i 7442 |
. . . . . . . . . . . . 13
⊢ (𝑎 ++ 〈“𝑏(𝑀‘𝑏)”〉) = (𝑎 ++ (〈“𝑏”〉 ++ 〈“(𝑀‘𝑏)”〉)) |
| 113 | 110, 112 | eqtr4di 2795 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ 〈“𝑏”〉) ++
〈“(𝑀‘𝑏)”〉) = (𝑎 ++ 〈“𝑏(𝑀‘𝑏)”〉)) |
| 114 | 113 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (((𝑎 ++ 〈“𝑏”〉) ++
〈“(𝑀‘𝑏)”〉) ++ (𝑀 ∘ (reverse‘𝑎))) = ((𝑎 ++ 〈“𝑏(𝑀‘𝑏)”〉) ++ (𝑀 ∘ (reverse‘𝑎)))) |
| 115 | 103, 108,
114 | 3eqtr2rd 2784 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ 〈“𝑏(𝑀‘𝑏)”〉) ++ (𝑀 ∘ (reverse‘𝑎))) = ((𝑎 ++ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉))))) |
| 116 | 73, 88, 115 | 3eqtrd 2781 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
((♯‘𝑎)(𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))𝑏) = ((𝑎 ++ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉))))) |
| 117 | 1, 34, 47, 71 | efgtf 19740 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ 𝑊 → ((𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) = (𝑚 ∈ (0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))), 𝑢 ∈ (𝐼 × 2o) ↦ ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) splice 〈𝑚, 𝑚, 〈“𝑢(𝑀‘𝑢)”〉〉)) ∧ (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))):((0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) × (𝐼 × 2o))⟶𝑊)) |
| 118 | 117 | simprd 495 |
. . . . . . . . . . . 12
⊢ ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ 𝑊 → (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))):((0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) × (𝐼 × 2o))⟶𝑊) |
| 119 | 54, 118 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))):((0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) × (𝐼 × 2o))⟶𝑊) |
| 120 | 119 | ffnd 6737 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) Fn ((0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) × (𝐼 × 2o))) |
| 121 | | fnovrn 7608 |
. . . . . . . . . 10
⊢ (((𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) Fn ((0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) × (𝐼 × 2o)) ∧
(♯‘𝑎) ∈
(0...(♯‘(𝑎 ++
(𝑀 ∘
(reverse‘𝑎))))) ∧
𝑏 ∈ (𝐼 × 2o)) →
((♯‘𝑎)(𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))𝑏) ∈ ran (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) |
| 122 | 120, 69, 70, 121 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) →
((♯‘𝑎)(𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))𝑏) ∈ ran (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) |
| 123 | 116, 122 | eqeltrrd 2842 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉)))) ∈ ran
(𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) |
| 124 | 1, 34, 47, 71 | efgi2 19743 |
. . . . . . . 8
⊢ (((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ 𝑊 ∧ ((𝑎 ++ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉)))) ∈ ran (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∼ ((𝑎 ++ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉))))) |
| 125 | 54, 123, 124 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∼ ((𝑎 ++ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉))))) |
| 126 | 43, 125 | ersym 8757 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉)))) ∼ (𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) |
| 127 | 43 | ertr 8760 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((((𝑎 ++ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉)))) ∼ (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∧ (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∼ ∅) →
((𝑎 ++ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉)))) ∼
∅)) |
| 128 | 126, 127 | mpand 695 |
. . . . 5
⊢ ((𝐴 ∈ 𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∼ ∅ →
((𝑎 ++ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉)))) ∼
∅)) |
| 129 | 128 | expcom 413 |
. . . 4
⊢ ((𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o)) → (𝐴 ∈ 𝑊 → ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∼ ∅ →
((𝑎 ++ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉)))) ∼
∅))) |
| 130 | 129 | a2d 29 |
. . 3
⊢ ((𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o)) → ((𝐴 ∈ 𝑊 → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∼ ∅) →
(𝐴 ∈ 𝑊 → ((𝑎 ++ 〈“𝑏”〉) ++ (𝑀 ∘ (reverse‘(𝑎 ++ 〈“𝑏”〉)))) ∼
∅))) |
| 131 | 14, 20, 26, 32, 42, 130 | wrdind 14760 |
. 2
⊢ (𝐴 ∈ Word (𝐼 × 2o) → (𝐴 ∈ 𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∼
∅)) |
| 132 | 4, 131 | mpcom 38 |
1
⊢ (𝐴 ∈ 𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∼
∅) |