![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cats2cat | Structured version Visualization version GIF version |
Description: Closure of concatenation of concatenations with singleton words. (Contributed by AV, 1-Mar-2021.) |
Ref | Expression |
---|---|
cats2cat.b | ⊢ 𝐵 ∈ Word V |
cats2cat.d | ⊢ 𝐷 ∈ Word V |
cats2cat.a | ⊢ 𝐴 = (𝐵 ++ ⟨“𝑋”⟩) |
cats2cat.c | ⊢ 𝐶 = (⟨“𝑌”⟩ ++ 𝐷) |
Ref | Expression |
---|---|
cats2cat | ⊢ (𝐴 ++ 𝐶) = ((𝐵 ++ ⟨“𝑋𝑌”⟩) ++ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cats2cat.a | . . 3 ⊢ 𝐴 = (𝐵 ++ ⟨“𝑋”⟩) | |
2 | cats2cat.c | . . 3 ⊢ 𝐶 = (⟨“𝑌”⟩ ++ 𝐷) | |
3 | 1, 2 | oveq12i 7424 | . 2 ⊢ (𝐴 ++ 𝐶) = ((𝐵 ++ ⟨“𝑋”⟩) ++ (⟨“𝑌”⟩ ++ 𝐷)) |
4 | cats2cat.b | . . . 4 ⊢ 𝐵 ∈ Word V | |
5 | s1cli 14560 | . . . 4 ⊢ ⟨“𝑋”⟩ ∈ Word V | |
6 | ccatcl 14529 | . . . 4 ⊢ ((𝐵 ∈ Word V ∧ ⟨“𝑋”⟩ ∈ Word V) → (𝐵 ++ ⟨“𝑋”⟩) ∈ Word V) | |
7 | 4, 5, 6 | mp2an 689 | . . 3 ⊢ (𝐵 ++ ⟨“𝑋”⟩) ∈ Word V |
8 | s1cli 14560 | . . 3 ⊢ ⟨“𝑌”⟩ ∈ Word V | |
9 | cats2cat.d | . . 3 ⊢ 𝐷 ∈ Word V | |
10 | ccatass 14543 | . . 3 ⊢ (((𝐵 ++ ⟨“𝑋”⟩) ∈ Word V ∧ ⟨“𝑌”⟩ ∈ Word V ∧ 𝐷 ∈ Word V) → (((𝐵 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ++ 𝐷) = ((𝐵 ++ ⟨“𝑋”⟩) ++ (⟨“𝑌”⟩ ++ 𝐷))) | |
11 | 7, 8, 9, 10 | mp3an 1460 | . 2 ⊢ (((𝐵 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ++ 𝐷) = ((𝐵 ++ ⟨“𝑋”⟩) ++ (⟨“𝑌”⟩ ++ 𝐷)) |
12 | ccatass 14543 | . . . . 5 ⊢ ((𝐵 ∈ Word V ∧ ⟨“𝑋”⟩ ∈ Word V ∧ ⟨“𝑌”⟩ ∈ Word V) → ((𝐵 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) = (𝐵 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩))) | |
13 | 4, 5, 8, 12 | mp3an 1460 | . . . 4 ⊢ ((𝐵 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) = (𝐵 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)) |
14 | df-s2 14804 | . . . . . 6 ⊢ ⟨“𝑋𝑌”⟩ = (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩) | |
15 | 14 | eqcomi 2740 | . . . . 5 ⊢ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩) = ⟨“𝑋𝑌”⟩ |
16 | 15 | oveq2i 7423 | . . . 4 ⊢ (𝐵 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)) = (𝐵 ++ ⟨“𝑋𝑌”⟩) |
17 | 13, 16 | eqtri 2759 | . . 3 ⊢ ((𝐵 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) = (𝐵 ++ ⟨“𝑋𝑌”⟩) |
18 | 17 | oveq1i 7422 | . 2 ⊢ (((𝐵 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ++ 𝐷) = ((𝐵 ++ ⟨“𝑋𝑌”⟩) ++ 𝐷) |
19 | 3, 11, 18 | 3eqtr2i 2765 | 1 ⊢ (𝐴 ++ 𝐶) = ((𝐵 ++ ⟨“𝑋𝑌”⟩) ++ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Vcvv 3473 (class class class)co 7412 Word cword 14469 ++ cconcat 14525 ⟨“cs1 14550 ⟨“cs2 14797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-concat 14526 df-s1 14551 df-s2 14804 |
This theorem is referenced by: s3s4 14889 s2s5 14890 s5s2 14891 |
Copyright terms: Public domain | W3C validator |