| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cats2cat | Structured version Visualization version GIF version | ||
| Description: Closure of concatenation of concatenations with singleton words. (Contributed by AV, 1-Mar-2021.) |
| Ref | Expression |
|---|---|
| cats2cat.b | ⊢ 𝐵 ∈ Word V |
| cats2cat.d | ⊢ 𝐷 ∈ Word V |
| cats2cat.a | ⊢ 𝐴 = (𝐵 ++ 〈“𝑋”〉) |
| cats2cat.c | ⊢ 𝐶 = (〈“𝑌”〉 ++ 𝐷) |
| Ref | Expression |
|---|---|
| cats2cat | ⊢ (𝐴 ++ 𝐶) = ((𝐵 ++ 〈“𝑋𝑌”〉) ++ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cats2cat.a | . . 3 ⊢ 𝐴 = (𝐵 ++ 〈“𝑋”〉) | |
| 2 | cats2cat.c | . . 3 ⊢ 𝐶 = (〈“𝑌”〉 ++ 𝐷) | |
| 3 | 1, 2 | oveq12i 7364 | . 2 ⊢ (𝐴 ++ 𝐶) = ((𝐵 ++ 〈“𝑋”〉) ++ (〈“𝑌”〉 ++ 𝐷)) |
| 4 | cats2cat.b | . . . 4 ⊢ 𝐵 ∈ Word V | |
| 5 | s1cli 14515 | . . . 4 ⊢ 〈“𝑋”〉 ∈ Word V | |
| 6 | ccatcl 14483 | . . . 4 ⊢ ((𝐵 ∈ Word V ∧ 〈“𝑋”〉 ∈ Word V) → (𝐵 ++ 〈“𝑋”〉) ∈ Word V) | |
| 7 | 4, 5, 6 | mp2an 692 | . . 3 ⊢ (𝐵 ++ 〈“𝑋”〉) ∈ Word V |
| 8 | s1cli 14515 | . . 3 ⊢ 〈“𝑌”〉 ∈ Word V | |
| 9 | cats2cat.d | . . 3 ⊢ 𝐷 ∈ Word V | |
| 10 | ccatass 14498 | . . 3 ⊢ (((𝐵 ++ 〈“𝑋”〉) ∈ Word V ∧ 〈“𝑌”〉 ∈ Word V ∧ 𝐷 ∈ Word V) → (((𝐵 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ++ 𝐷) = ((𝐵 ++ 〈“𝑋”〉) ++ (〈“𝑌”〉 ++ 𝐷))) | |
| 11 | 7, 8, 9, 10 | mp3an 1463 | . 2 ⊢ (((𝐵 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ++ 𝐷) = ((𝐵 ++ 〈“𝑋”〉) ++ (〈“𝑌”〉 ++ 𝐷)) |
| 12 | ccatass 14498 | . . . . 5 ⊢ ((𝐵 ∈ Word V ∧ 〈“𝑋”〉 ∈ Word V ∧ 〈“𝑌”〉 ∈ Word V) → ((𝐵 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝐵 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))) | |
| 13 | 4, 5, 8, 12 | mp3an 1463 | . . . 4 ⊢ ((𝐵 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝐵 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉)) |
| 14 | df-s2 14757 | . . . . . 6 ⊢ 〈“𝑋𝑌”〉 = (〈“𝑋”〉 ++ 〈“𝑌”〉) | |
| 15 | 14 | eqcomi 2742 | . . . . 5 ⊢ (〈“𝑋”〉 ++ 〈“𝑌”〉) = 〈“𝑋𝑌”〉 |
| 16 | 15 | oveq2i 7363 | . . . 4 ⊢ (𝐵 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉)) = (𝐵 ++ 〈“𝑋𝑌”〉) |
| 17 | 13, 16 | eqtri 2756 | . . 3 ⊢ ((𝐵 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝐵 ++ 〈“𝑋𝑌”〉) |
| 18 | 17 | oveq1i 7362 | . 2 ⊢ (((𝐵 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ++ 𝐷) = ((𝐵 ++ 〈“𝑋𝑌”〉) ++ 𝐷) |
| 19 | 3, 11, 18 | 3eqtr2i 2762 | 1 ⊢ (𝐴 ++ 𝐶) = ((𝐵 ++ 〈“𝑋𝑌”〉) ++ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 (class class class)co 7352 Word cword 14422 ++ cconcat 14479 〈“cs1 14505 〈“cs2 14750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-concat 14480 df-s1 14506 df-s2 14757 |
| This theorem is referenced by: s3s4 14842 s2s5 14843 s5s2 14844 |
| Copyright terms: Public domain | W3C validator |