| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s2eqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
| s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
| Ref | Expression |
|---|---|
| s2eqd | ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
| 2 | 1 | s1eqd 14509 | . . 3 ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝑁”〉) |
| 3 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
| 4 | 3 | s1eqd 14509 | . . 3 ⊢ (𝜑 → 〈“𝐵”〉 = 〈“𝑂”〉) |
| 5 | 2, 4 | oveq12d 7364 | . 2 ⊢ (𝜑 → (〈“𝐴”〉 ++ 〈“𝐵”〉) = (〈“𝑁”〉 ++ 〈“𝑂”〉)) |
| 6 | df-s2 14755 | . 2 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
| 7 | df-s2 14755 | . 2 ⊢ 〈“𝑁𝑂”〉 = (〈“𝑁”〉 ++ 〈“𝑂”〉) | |
| 8 | 5, 6, 7 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 (class class class)co 7346 ++ cconcat 14477 〈“cs1 14503 〈“cs2 14748 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-s1 14504 df-s2 14755 |
| This theorem is referenced by: s3eqd 14771 swrds2m 14848 wrdl2exs2 14853 swrd2lsw 14859 efgi 19632 efgi0 19633 efgi1 19634 efgtf 19635 efgtval 19636 efgval2 19637 frgpuplem 19685 2clwwlk2clwwlklem 30324 wrdt2ind 32932 elrgspnsubrunlem1 33212 elrgspnsubrun 33214 |
| Copyright terms: Public domain | W3C validator |