![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s2eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
Ref | Expression |
---|---|
s2eqd | ⊢ (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
2 | 1 | s1eqd 14555 | . . 3 ⊢ (𝜑 → ⟨“𝐴”⟩ = ⟨“𝑁”⟩) |
3 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
4 | 3 | s1eqd 14555 | . . 3 ⊢ (𝜑 → ⟨“𝐵”⟩ = ⟨“𝑂”⟩) |
5 | 2, 4 | oveq12d 7429 | . 2 ⊢ (𝜑 → (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) = (⟨“𝑁”⟩ ++ ⟨“𝑂”⟩)) |
6 | df-s2 14803 | . 2 ⊢ ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) | |
7 | df-s2 14803 | . 2 ⊢ ⟨“𝑁𝑂”⟩ = (⟨“𝑁”⟩ ++ ⟨“𝑂”⟩) | |
8 | 5, 6, 7 | 3eqtr4g 2795 | 1 ⊢ (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 (class class class)co 7411 ++ cconcat 14524 ⟨“cs1 14549 ⟨“cs2 14796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6494 df-fv 6550 df-ov 7414 df-s1 14550 df-s2 14803 |
This theorem is referenced by: s3eqd 14819 swrds2m 14896 wrdl2exs2 14901 swrd2lsw 14907 efgi 19628 efgi0 19629 efgi1 19630 efgtf 19631 efgtval 19632 efgval2 19633 frgpuplem 19681 2clwwlk2clwwlklem 29866 wrdt2ind 32384 |
Copyright terms: Public domain | W3C validator |