MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s2eqd Structured version   Visualization version   GIF version

Theorem s2eqd 14829
Description: Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
Assertion
Ref Expression
s2eqd (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩)

Proof of Theorem s2eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
21s1eqd 14566 . . 3 (𝜑 → ⟨“𝐴”⟩ = ⟨“𝑁”⟩)
3 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
43s1eqd 14566 . . 3 (𝜑 → ⟨“𝐵”⟩ = ⟨“𝑂”⟩)
52, 4oveq12d 7405 . 2 (𝜑 → (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) = (⟨“𝑁”⟩ ++ ⟨“𝑂”⟩))
6 df-s2 14814 . 2 ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
7 df-s2 14814 . 2 ⟨“𝑁𝑂”⟩ = (⟨“𝑁”⟩ ++ ⟨“𝑂”⟩)
85, 6, 73eqtr4g 2789 1 (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  (class class class)co 7387   ++ cconcat 14535  ⟨“cs1 14560  ⟨“cs2 14807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-s1 14561  df-s2 14814
This theorem is referenced by:  s3eqd  14830  swrds2m  14907  wrdl2exs2  14912  swrd2lsw  14918  efgi  19649  efgi0  19650  efgi1  19651  efgtf  19652  efgtval  19653  efgval2  19654  frgpuplem  19702  2clwwlk2clwwlklem  30275  wrdt2ind  32875  elrgspnsubrunlem1  33198  elrgspnsubrun  33200
  Copyright terms: Public domain W3C validator