![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s2eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
Ref | Expression |
---|---|
s2eqd | ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
2 | 1 | s1eqd 13804 | . . 3 ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝑁”〉) |
3 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
4 | 3 | s1eqd 13804 | . . 3 ⊢ (𝜑 → 〈“𝐵”〉 = 〈“𝑂”〉) |
5 | 2, 4 | oveq12d 7039 | . 2 ⊢ (𝜑 → (〈“𝐴”〉 ++ 〈“𝐵”〉) = (〈“𝑁”〉 ++ 〈“𝑂”〉)) |
6 | df-s2 14051 | . 2 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
7 | df-s2 14051 | . 2 ⊢ 〈“𝑁𝑂”〉 = (〈“𝑁”〉 ++ 〈“𝑂”〉) | |
8 | 5, 6, 7 | 3eqtr4g 2856 | 1 ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 (class class class)co 7021 ++ cconcat 13773 〈“cs1 13798 〈“cs2 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-rex 3111 df-rab 3114 df-v 3439 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-nul 4216 df-if 4386 df-sn 4477 df-pr 4479 df-op 4483 df-uni 4750 df-br 4967 df-iota 6194 df-fv 6238 df-ov 7024 df-s1 13799 df-s2 14051 |
This theorem is referenced by: s3eqd 14067 swrds2m 14144 wrdl2exs2 14149 swrd2lsw 14155 efgi 18577 efgi0 18578 efgi1 18579 efgtf 18580 efgtval 18581 efgval2 18582 frgpuplem 18630 2clwwlk2clwwlklem 27822 wrdt2ind 30311 |
Copyright terms: Public domain | W3C validator |