Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  s2eqd Structured version   Visualization version   GIF version

Theorem s2eqd 14066
 Description: Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
Assertion
Ref Expression
s2eqd (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩)

Proof of Theorem s2eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
21s1eqd 13804 . . 3 (𝜑 → ⟨“𝐴”⟩ = ⟨“𝑁”⟩)
3 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
43s1eqd 13804 . . 3 (𝜑 → ⟨“𝐵”⟩ = ⟨“𝑂”⟩)
52, 4oveq12d 7039 . 2 (𝜑 → (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) = (⟨“𝑁”⟩ ++ ⟨“𝑂”⟩))
6 df-s2 14051 . 2 ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
7 df-s2 14051 . 2 ⟨“𝑁𝑂”⟩ = (⟨“𝑁”⟩ ++ ⟨“𝑂”⟩)
85, 6, 73eqtr4g 2856 1 (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1522  (class class class)co 7021   ++ cconcat 13773  ⟨“cs1 13798  ⟨“cs2 14044 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-rex 3111  df-rab 3114  df-v 3439  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-nul 4216  df-if 4386  df-sn 4477  df-pr 4479  df-op 4483  df-uni 4750  df-br 4967  df-iota 6194  df-fv 6238  df-ov 7024  df-s1 13799  df-s2 14051 This theorem is referenced by:  s3eqd  14067  swrds2m  14144  wrdl2exs2  14149  swrd2lsw  14155  efgi  18577  efgi0  18578  efgi1  18579  efgtf  18580  efgtval  18581  efgval2  18582  frgpuplem  18630  2clwwlk2clwwlklem  27822  wrdt2ind  30311
 Copyright terms: Public domain W3C validator