MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s2eqd Structured version   Visualization version   GIF version

Theorem s2eqd 14770
Description: Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
Assertion
Ref Expression
s2eqd (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩)

Proof of Theorem s2eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
21s1eqd 14509 . . 3 (𝜑 → ⟨“𝐴”⟩ = ⟨“𝑁”⟩)
3 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
43s1eqd 14509 . . 3 (𝜑 → ⟨“𝐵”⟩ = ⟨“𝑂”⟩)
52, 4oveq12d 7364 . 2 (𝜑 → (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) = (⟨“𝑁”⟩ ++ ⟨“𝑂”⟩))
6 df-s2 14755 . 2 ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
7 df-s2 14755 . 2 ⟨“𝑁𝑂”⟩ = (⟨“𝑁”⟩ ++ ⟨“𝑂”⟩)
85, 6, 73eqtr4g 2791 1 (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  (class class class)co 7346   ++ cconcat 14477  ⟨“cs1 14503  ⟨“cs2 14748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-s1 14504  df-s2 14755
This theorem is referenced by:  s3eqd  14771  swrds2m  14848  wrdl2exs2  14853  swrd2lsw  14859  efgi  19632  efgi0  19633  efgi1  19634  efgtf  19635  efgtval  19636  efgval2  19637  frgpuplem  19685  2clwwlk2clwwlklem  30324  wrdt2ind  32932  elrgspnsubrunlem1  33212  elrgspnsubrun  33214
  Copyright terms: Public domain W3C validator