Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnoeomeqom Structured version   Visualization version   GIF version

Theorem nnoeomeqom 43283
Description: Any natural number at least as large as two raised to the power of omega is omega. Lemma 3.25 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
nnoeomeqom ((𝐴 ∈ ω ∧ 1o𝐴) → (𝐴o ω) = ω)

Proof of Theorem nnoeomeqom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐴 ∈ ω ∧ 1o𝐴) → 𝐴 ∈ ω)
2 nnon 7865 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
31, 2syl 17 . . 3 ((𝐴 ∈ ω ∧ 1o𝐴) → 𝐴 ∈ On)
4 omelon 9658 . . . . 5 ω ∈ On
5 limom 7875 . . . . 5 Lim ω
64, 5pm3.2i 470 . . . 4 (ω ∈ On ∧ Lim ω)
76a1i 11 . . 3 ((𝐴 ∈ ω ∧ 1o𝐴) → (ω ∈ On ∧ Lim ω))
8 0elon 6407 . . . . 5 ∅ ∈ On
98a1i 11 . . . 4 ((𝐴 ∈ ω ∧ 1o𝐴) → ∅ ∈ On)
10 0ss 4375 . . . . 5 ∅ ⊆ 1o
1110a1i 11 . . . 4 ((𝐴 ∈ ω ∧ 1o𝐴) → ∅ ⊆ 1o)
12 simpr 484 . . . 4 ((𝐴 ∈ ω ∧ 1o𝐴) → 1o𝐴)
13 ontr2 6400 . . . . 5 ((∅ ∈ On ∧ 𝐴 ∈ On) → ((∅ ⊆ 1o ∧ 1o𝐴) → ∅ ∈ 𝐴))
1413imp 406 . . . 4 (((∅ ∈ On ∧ 𝐴 ∈ On) ∧ (∅ ⊆ 1o ∧ 1o𝐴)) → ∅ ∈ 𝐴)
159, 3, 11, 12, 14syl22anc 838 . . 3 ((𝐴 ∈ ω ∧ 1o𝐴) → ∅ ∈ 𝐴)
16 oelim 8544 . . 3 (((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) ∧ ∅ ∈ 𝐴) → (𝐴o ω) = 𝑥 ∈ ω (𝐴o 𝑥))
173, 7, 15, 16syl21anc 837 . 2 ((𝐴 ∈ ω ∧ 1o𝐴) → (𝐴o ω) = 𝑥 ∈ ω (𝐴o 𝑥))
18 ovex 7436 . . . 4 (𝐴o 𝑥) ∈ V
1918dfiun2 5009 . . 3 𝑥 ∈ ω (𝐴o 𝑥) = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)}
20 eluniab 4897 . . . . . 6 (𝑧 {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)} ↔ ∃𝑦(𝑧𝑦 ∧ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)))
21 19.42v 1953 . . . . . . . 8 (∃𝑥(𝑧𝑦 ∧ (𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) ↔ (𝑧𝑦 ∧ ∃𝑥(𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))))
22 3anass 1094 . . . . . . . . 9 ((𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ (𝑧𝑦 ∧ (𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))))
2322exbii 1848 . . . . . . . 8 (∃𝑥(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ ∃𝑥(𝑧𝑦 ∧ (𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))))
24 df-rex 3061 . . . . . . . . 9 (∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥) ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
2524anbi2i 623 . . . . . . . 8 ((𝑧𝑦 ∧ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)) ↔ (𝑧𝑦 ∧ ∃𝑥(𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))))
2621, 23, 253bitr4ri 304 . . . . . . 7 ((𝑧𝑦 ∧ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)) ↔ ∃𝑥(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
2726exbii 1848 . . . . . 6 (∃𝑦(𝑧𝑦 ∧ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)) ↔ ∃𝑦𝑥(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
28 excom 2162 . . . . . 6 (∃𝑦𝑥(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ ∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
2920, 27, 283bitri 297 . . . . 5 (𝑧 {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)} ↔ ∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
30 simpr3 1197 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → 𝑦 = (𝐴o 𝑥))
31 simp2 1137 . . . . . . . . . . . 12 ((𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) → 𝑥 ∈ ω)
32 nnecl 8623 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴o 𝑥) ∈ ω)
331, 31, 32syl2an 596 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → (𝐴o 𝑥) ∈ ω)
34 onelss 6394 . . . . . . . . . . 11 (ω ∈ On → ((𝐴o 𝑥) ∈ ω → (𝐴o 𝑥) ⊆ ω))
354, 33, 34mpsyl 68 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → (𝐴o 𝑥) ⊆ ω)
3630, 35eqsstrd 3993 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → 𝑦 ⊆ ω)
37 simpr1 1195 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → 𝑧𝑦)
3836, 37sseldd 3959 . . . . . . . 8 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → 𝑧 ∈ ω)
3938ex 412 . . . . . . 7 ((𝐴 ∈ ω ∧ 1o𝐴) → ((𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) → 𝑧 ∈ ω))
4039exlimdvv 1934 . . . . . 6 ((𝐴 ∈ ω ∧ 1o𝐴) → (∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) → 𝑧 ∈ ω))
41 peano2 7884 . . . . . . . . 9 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
4241adantl 481 . . . . . . . 8 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → suc 𝑧 ∈ ω)
43 ovex 7436 . . . . . . . . . 10 (𝐴o suc 𝑧) ∈ V
4443a1i 11 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → (𝐴o suc 𝑧) ∈ V)
452anim1i 615 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 1o𝐴) → (𝐴 ∈ On ∧ 1o𝐴))
46 ondif2 8512 . . . . . . . . . . . . 13 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
4745, 46sylibr 234 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 1o𝐴) → 𝐴 ∈ (On ∖ 2o))
48 nnon 7865 . . . . . . . . . . . . 13 (suc 𝑧 ∈ ω → suc 𝑧 ∈ On)
4941, 48syl 17 . . . . . . . . . . . 12 (𝑧 ∈ ω → suc 𝑧 ∈ On)
50 oeworde 8603 . . . . . . . . . . . 12 ((𝐴 ∈ (On ∖ 2o) ∧ suc 𝑧 ∈ On) → suc 𝑧 ⊆ (𝐴o suc 𝑧))
5147, 49, 50syl2an 596 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → suc 𝑧 ⊆ (𝐴o suc 𝑧))
52 vex 3463 . . . . . . . . . . . . 13 𝑧 ∈ V
5352sucid 6435 . . . . . . . . . . . 12 𝑧 ∈ suc 𝑧
5453a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → 𝑧 ∈ suc 𝑧)
5551, 54sseldd 3959 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → 𝑧 ∈ (𝐴o suc 𝑧))
56 eqidd 2736 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → (𝐴o suc 𝑧) = (𝐴o suc 𝑧))
5755, 42, 563jca 1128 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → (𝑧 ∈ (𝐴o suc 𝑧) ∧ suc 𝑧 ∈ ω ∧ (𝐴o suc 𝑧) = (𝐴o suc 𝑧)))
58 eleq2 2823 . . . . . . . . . 10 (𝑦 = (𝐴o suc 𝑧) → (𝑧𝑦𝑧 ∈ (𝐴o suc 𝑧)))
59 eqeq1 2739 . . . . . . . . . 10 (𝑦 = (𝐴o suc 𝑧) → (𝑦 = (𝐴o suc 𝑧) ↔ (𝐴o suc 𝑧) = (𝐴o suc 𝑧)))
6058, 593anbi13d 1440 . . . . . . . . 9 (𝑦 = (𝐴o suc 𝑧) → ((𝑧𝑦 ∧ suc 𝑧 ∈ ω ∧ 𝑦 = (𝐴o suc 𝑧)) ↔ (𝑧 ∈ (𝐴o suc 𝑧) ∧ suc 𝑧 ∈ ω ∧ (𝐴o suc 𝑧) = (𝐴o suc 𝑧))))
6144, 57, 60spcedv 3577 . . . . . . . 8 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → ∃𝑦(𝑧𝑦 ∧ suc 𝑧 ∈ ω ∧ 𝑦 = (𝐴o suc 𝑧)))
62 eleq1 2822 . . . . . . . . . 10 (𝑥 = suc 𝑧 → (𝑥 ∈ ω ↔ suc 𝑧 ∈ ω))
63 oveq2 7411 . . . . . . . . . . 11 (𝑥 = suc 𝑧 → (𝐴o 𝑥) = (𝐴o suc 𝑧))
6463eqeq2d 2746 . . . . . . . . . 10 (𝑥 = suc 𝑧 → (𝑦 = (𝐴o 𝑥) ↔ 𝑦 = (𝐴o suc 𝑧)))
6562, 643anbi23d 1441 . . . . . . . . 9 (𝑥 = suc 𝑧 → ((𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ (𝑧𝑦 ∧ suc 𝑧 ∈ ω ∧ 𝑦 = (𝐴o suc 𝑧))))
6665exbidv 1921 . . . . . . . 8 (𝑥 = suc 𝑧 → (∃𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ ∃𝑦(𝑧𝑦 ∧ suc 𝑧 ∈ ω ∧ 𝑦 = (𝐴o suc 𝑧))))
6742, 61, 66spcedv 3577 . . . . . . 7 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → ∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
6867ex 412 . . . . . 6 ((𝐴 ∈ ω ∧ 1o𝐴) → (𝑧 ∈ ω → ∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))))
6940, 68impbid 212 . . . . 5 ((𝐴 ∈ ω ∧ 1o𝐴) → (∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ 𝑧 ∈ ω))
7029, 69bitrid 283 . . . 4 ((𝐴 ∈ ω ∧ 1o𝐴) → (𝑧 {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)} ↔ 𝑧 ∈ ω))
7170eqrdv 2733 . . 3 ((𝐴 ∈ ω ∧ 1o𝐴) → {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)} = ω)
7219, 71eqtrid 2782 . 2 ((𝐴 ∈ ω ∧ 1o𝐴) → 𝑥 ∈ ω (𝐴o 𝑥) = ω)
7317, 72eqtrd 2770 1 ((𝐴 ∈ ω ∧ 1o𝐴) → (𝐴o ω) = ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  {cab 2713  wrex 3060  Vcvv 3459  cdif 3923  wss 3926  c0 4308   cuni 4883   ciun 4967  Oncon0 6352  Lim wlim 6353  suc csuc 6354  (class class class)co 7403  ωcom 7859  1oc1o 8471  2oc2o 8472  o coe 8477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727  ax-inf2 9653
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-oexp 8484
This theorem is referenced by:  oenord1ex  43286  oaomoencom  43288
  Copyright terms: Public domain W3C validator