Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnoeomeqom Structured version   Visualization version   GIF version

Theorem nnoeomeqom 43404
Description: Any natural number at least as large as two raised to the power of omega is omega. Lemma 3.25 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
nnoeomeqom ((𝐴 ∈ ω ∧ 1o𝐴) → (𝐴o ω) = ω)

Proof of Theorem nnoeomeqom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐴 ∈ ω ∧ 1o𝐴) → 𝐴 ∈ ω)
2 nnon 7802 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
31, 2syl 17 . . 3 ((𝐴 ∈ ω ∧ 1o𝐴) → 𝐴 ∈ On)
4 omelon 9536 . . . . 5 ω ∈ On
5 limom 7812 . . . . 5 Lim ω
64, 5pm3.2i 470 . . . 4 (ω ∈ On ∧ Lim ω)
76a1i 11 . . 3 ((𝐴 ∈ ω ∧ 1o𝐴) → (ω ∈ On ∧ Lim ω))
8 0elon 6361 . . . . 5 ∅ ∈ On
98a1i 11 . . . 4 ((𝐴 ∈ ω ∧ 1o𝐴) → ∅ ∈ On)
10 0ss 4347 . . . . 5 ∅ ⊆ 1o
1110a1i 11 . . . 4 ((𝐴 ∈ ω ∧ 1o𝐴) → ∅ ⊆ 1o)
12 simpr 484 . . . 4 ((𝐴 ∈ ω ∧ 1o𝐴) → 1o𝐴)
13 ontr2 6354 . . . . 5 ((∅ ∈ On ∧ 𝐴 ∈ On) → ((∅ ⊆ 1o ∧ 1o𝐴) → ∅ ∈ 𝐴))
1413imp 406 . . . 4 (((∅ ∈ On ∧ 𝐴 ∈ On) ∧ (∅ ⊆ 1o ∧ 1o𝐴)) → ∅ ∈ 𝐴)
159, 3, 11, 12, 14syl22anc 838 . . 3 ((𝐴 ∈ ω ∧ 1o𝐴) → ∅ ∈ 𝐴)
16 oelim 8449 . . 3 (((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) ∧ ∅ ∈ 𝐴) → (𝐴o ω) = 𝑥 ∈ ω (𝐴o 𝑥))
173, 7, 15, 16syl21anc 837 . 2 ((𝐴 ∈ ω ∧ 1o𝐴) → (𝐴o ω) = 𝑥 ∈ ω (𝐴o 𝑥))
18 ovex 7379 . . . 4 (𝐴o 𝑥) ∈ V
1918dfiun2 4980 . . 3 𝑥 ∈ ω (𝐴o 𝑥) = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)}
20 eluniab 4870 . . . . . 6 (𝑧 {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)} ↔ ∃𝑦(𝑧𝑦 ∧ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)))
21 19.42v 1954 . . . . . . . 8 (∃𝑥(𝑧𝑦 ∧ (𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) ↔ (𝑧𝑦 ∧ ∃𝑥(𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))))
22 3anass 1094 . . . . . . . . 9 ((𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ (𝑧𝑦 ∧ (𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))))
2322exbii 1849 . . . . . . . 8 (∃𝑥(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ ∃𝑥(𝑧𝑦 ∧ (𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))))
24 df-rex 3057 . . . . . . . . 9 (∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥) ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
2524anbi2i 623 . . . . . . . 8 ((𝑧𝑦 ∧ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)) ↔ (𝑧𝑦 ∧ ∃𝑥(𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))))
2621, 23, 253bitr4ri 304 . . . . . . 7 ((𝑧𝑦 ∧ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)) ↔ ∃𝑥(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
2726exbii 1849 . . . . . 6 (∃𝑦(𝑧𝑦 ∧ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)) ↔ ∃𝑦𝑥(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
28 excom 2165 . . . . . 6 (∃𝑦𝑥(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ ∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
2920, 27, 283bitri 297 . . . . 5 (𝑧 {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)} ↔ ∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
30 simpr3 1197 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → 𝑦 = (𝐴o 𝑥))
31 simp2 1137 . . . . . . . . . . . 12 ((𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) → 𝑥 ∈ ω)
32 nnecl 8528 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴o 𝑥) ∈ ω)
331, 31, 32syl2an 596 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → (𝐴o 𝑥) ∈ ω)
34 onelss 6348 . . . . . . . . . . 11 (ω ∈ On → ((𝐴o 𝑥) ∈ ω → (𝐴o 𝑥) ⊆ ω))
354, 33, 34mpsyl 68 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → (𝐴o 𝑥) ⊆ ω)
3630, 35eqsstrd 3964 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → 𝑦 ⊆ ω)
37 simpr1 1195 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → 𝑧𝑦)
3836, 37sseldd 3930 . . . . . . . 8 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → 𝑧 ∈ ω)
3938ex 412 . . . . . . 7 ((𝐴 ∈ ω ∧ 1o𝐴) → ((𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) → 𝑧 ∈ ω))
4039exlimdvv 1935 . . . . . 6 ((𝐴 ∈ ω ∧ 1o𝐴) → (∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) → 𝑧 ∈ ω))
41 peano2 7820 . . . . . . . . 9 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
4241adantl 481 . . . . . . . 8 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → suc 𝑧 ∈ ω)
43 ovex 7379 . . . . . . . . . 10 (𝐴o suc 𝑧) ∈ V
4443a1i 11 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → (𝐴o suc 𝑧) ∈ V)
452anim1i 615 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 1o𝐴) → (𝐴 ∈ On ∧ 1o𝐴))
46 ondif2 8417 . . . . . . . . . . . . 13 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
4745, 46sylibr 234 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 1o𝐴) → 𝐴 ∈ (On ∖ 2o))
48 nnon 7802 . . . . . . . . . . . . 13 (suc 𝑧 ∈ ω → suc 𝑧 ∈ On)
4941, 48syl 17 . . . . . . . . . . . 12 (𝑧 ∈ ω → suc 𝑧 ∈ On)
50 oeworde 8508 . . . . . . . . . . . 12 ((𝐴 ∈ (On ∖ 2o) ∧ suc 𝑧 ∈ On) → suc 𝑧 ⊆ (𝐴o suc 𝑧))
5147, 49, 50syl2an 596 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → suc 𝑧 ⊆ (𝐴o suc 𝑧))
52 vex 3440 . . . . . . . . . . . . 13 𝑧 ∈ V
5352sucid 6390 . . . . . . . . . . . 12 𝑧 ∈ suc 𝑧
5453a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → 𝑧 ∈ suc 𝑧)
5551, 54sseldd 3930 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → 𝑧 ∈ (𝐴o suc 𝑧))
56 eqidd 2732 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → (𝐴o suc 𝑧) = (𝐴o suc 𝑧))
5755, 42, 563jca 1128 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → (𝑧 ∈ (𝐴o suc 𝑧) ∧ suc 𝑧 ∈ ω ∧ (𝐴o suc 𝑧) = (𝐴o suc 𝑧)))
58 eleq2 2820 . . . . . . . . . 10 (𝑦 = (𝐴o suc 𝑧) → (𝑧𝑦𝑧 ∈ (𝐴o suc 𝑧)))
59 eqeq1 2735 . . . . . . . . . 10 (𝑦 = (𝐴o suc 𝑧) → (𝑦 = (𝐴o suc 𝑧) ↔ (𝐴o suc 𝑧) = (𝐴o suc 𝑧)))
6058, 593anbi13d 1440 . . . . . . . . 9 (𝑦 = (𝐴o suc 𝑧) → ((𝑧𝑦 ∧ suc 𝑧 ∈ ω ∧ 𝑦 = (𝐴o suc 𝑧)) ↔ (𝑧 ∈ (𝐴o suc 𝑧) ∧ suc 𝑧 ∈ ω ∧ (𝐴o suc 𝑧) = (𝐴o suc 𝑧))))
6144, 57, 60spcedv 3548 . . . . . . . 8 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → ∃𝑦(𝑧𝑦 ∧ suc 𝑧 ∈ ω ∧ 𝑦 = (𝐴o suc 𝑧)))
62 eleq1 2819 . . . . . . . . . 10 (𝑥 = suc 𝑧 → (𝑥 ∈ ω ↔ suc 𝑧 ∈ ω))
63 oveq2 7354 . . . . . . . . . . 11 (𝑥 = suc 𝑧 → (𝐴o 𝑥) = (𝐴o suc 𝑧))
6463eqeq2d 2742 . . . . . . . . . 10 (𝑥 = suc 𝑧 → (𝑦 = (𝐴o 𝑥) ↔ 𝑦 = (𝐴o suc 𝑧)))
6562, 643anbi23d 1441 . . . . . . . . 9 (𝑥 = suc 𝑧 → ((𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ (𝑧𝑦 ∧ suc 𝑧 ∈ ω ∧ 𝑦 = (𝐴o suc 𝑧))))
6665exbidv 1922 . . . . . . . 8 (𝑥 = suc 𝑧 → (∃𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ ∃𝑦(𝑧𝑦 ∧ suc 𝑧 ∈ ω ∧ 𝑦 = (𝐴o suc 𝑧))))
6742, 61, 66spcedv 3548 . . . . . . 7 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → ∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
6867ex 412 . . . . . 6 ((𝐴 ∈ ω ∧ 1o𝐴) → (𝑧 ∈ ω → ∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))))
6940, 68impbid 212 . . . . 5 ((𝐴 ∈ ω ∧ 1o𝐴) → (∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ 𝑧 ∈ ω))
7029, 69bitrid 283 . . . 4 ((𝐴 ∈ ω ∧ 1o𝐴) → (𝑧 {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)} ↔ 𝑧 ∈ ω))
7170eqrdv 2729 . . 3 ((𝐴 ∈ ω ∧ 1o𝐴) → {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)} = ω)
7219, 71eqtrid 2778 . 2 ((𝐴 ∈ ω ∧ 1o𝐴) → 𝑥 ∈ ω (𝐴o 𝑥) = ω)
7317, 72eqtrd 2766 1 ((𝐴 ∈ ω ∧ 1o𝐴) → (𝐴o ω) = ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  cdif 3894  wss 3897  c0 4280   cuni 4856   ciun 4939  Oncon0 6306  Lim wlim 6307  suc csuc 6308  (class class class)co 7346  ωcom 7796  1oc1o 8378  2oc2o 8379  o coe 8384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-oexp 8391
This theorem is referenced by:  oenord1ex  43407  oaomoencom  43409
  Copyright terms: Public domain W3C validator