Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnoeomeqom Structured version   Visualization version   GIF version

Theorem nnoeomeqom 43301
Description: Any natural number at least as large as two raised to the power of omega is omega. Lemma 3.25 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
nnoeomeqom ((𝐴 ∈ ω ∧ 1o𝐴) → (𝐴o ω) = ω)

Proof of Theorem nnoeomeqom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐴 ∈ ω ∧ 1o𝐴) → 𝐴 ∈ ω)
2 nnon 7848 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
31, 2syl 17 . . 3 ((𝐴 ∈ ω ∧ 1o𝐴) → 𝐴 ∈ On)
4 omelon 9599 . . . . 5 ω ∈ On
5 limom 7858 . . . . 5 Lim ω
64, 5pm3.2i 470 . . . 4 (ω ∈ On ∧ Lim ω)
76a1i 11 . . 3 ((𝐴 ∈ ω ∧ 1o𝐴) → (ω ∈ On ∧ Lim ω))
8 0elon 6387 . . . . 5 ∅ ∈ On
98a1i 11 . . . 4 ((𝐴 ∈ ω ∧ 1o𝐴) → ∅ ∈ On)
10 0ss 4363 . . . . 5 ∅ ⊆ 1o
1110a1i 11 . . . 4 ((𝐴 ∈ ω ∧ 1o𝐴) → ∅ ⊆ 1o)
12 simpr 484 . . . 4 ((𝐴 ∈ ω ∧ 1o𝐴) → 1o𝐴)
13 ontr2 6380 . . . . 5 ((∅ ∈ On ∧ 𝐴 ∈ On) → ((∅ ⊆ 1o ∧ 1o𝐴) → ∅ ∈ 𝐴))
1413imp 406 . . . 4 (((∅ ∈ On ∧ 𝐴 ∈ On) ∧ (∅ ⊆ 1o ∧ 1o𝐴)) → ∅ ∈ 𝐴)
159, 3, 11, 12, 14syl22anc 838 . . 3 ((𝐴 ∈ ω ∧ 1o𝐴) → ∅ ∈ 𝐴)
16 oelim 8498 . . 3 (((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) ∧ ∅ ∈ 𝐴) → (𝐴o ω) = 𝑥 ∈ ω (𝐴o 𝑥))
173, 7, 15, 16syl21anc 837 . 2 ((𝐴 ∈ ω ∧ 1o𝐴) → (𝐴o ω) = 𝑥 ∈ ω (𝐴o 𝑥))
18 ovex 7420 . . . 4 (𝐴o 𝑥) ∈ V
1918dfiun2 4997 . . 3 𝑥 ∈ ω (𝐴o 𝑥) = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)}
20 eluniab 4885 . . . . . 6 (𝑧 {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)} ↔ ∃𝑦(𝑧𝑦 ∧ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)))
21 19.42v 1953 . . . . . . . 8 (∃𝑥(𝑧𝑦 ∧ (𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) ↔ (𝑧𝑦 ∧ ∃𝑥(𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))))
22 3anass 1094 . . . . . . . . 9 ((𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ (𝑧𝑦 ∧ (𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))))
2322exbii 1848 . . . . . . . 8 (∃𝑥(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ ∃𝑥(𝑧𝑦 ∧ (𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))))
24 df-rex 3054 . . . . . . . . 9 (∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥) ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
2524anbi2i 623 . . . . . . . 8 ((𝑧𝑦 ∧ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)) ↔ (𝑧𝑦 ∧ ∃𝑥(𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))))
2621, 23, 253bitr4ri 304 . . . . . . 7 ((𝑧𝑦 ∧ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)) ↔ ∃𝑥(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
2726exbii 1848 . . . . . 6 (∃𝑦(𝑧𝑦 ∧ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)) ↔ ∃𝑦𝑥(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
28 excom 2163 . . . . . 6 (∃𝑦𝑥(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ ∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
2920, 27, 283bitri 297 . . . . 5 (𝑧 {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)} ↔ ∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
30 simpr3 1197 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → 𝑦 = (𝐴o 𝑥))
31 simp2 1137 . . . . . . . . . . . 12 ((𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) → 𝑥 ∈ ω)
32 nnecl 8577 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴o 𝑥) ∈ ω)
331, 31, 32syl2an 596 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → (𝐴o 𝑥) ∈ ω)
34 onelss 6374 . . . . . . . . . . 11 (ω ∈ On → ((𝐴o 𝑥) ∈ ω → (𝐴o 𝑥) ⊆ ω))
354, 33, 34mpsyl 68 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → (𝐴o 𝑥) ⊆ ω)
3630, 35eqsstrd 3981 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → 𝑦 ⊆ ω)
37 simpr1 1195 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → 𝑧𝑦)
3836, 37sseldd 3947 . . . . . . . 8 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ (𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))) → 𝑧 ∈ ω)
3938ex 412 . . . . . . 7 ((𝐴 ∈ ω ∧ 1o𝐴) → ((𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) → 𝑧 ∈ ω))
4039exlimdvv 1934 . . . . . 6 ((𝐴 ∈ ω ∧ 1o𝐴) → (∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) → 𝑧 ∈ ω))
41 peano2 7866 . . . . . . . . 9 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
4241adantl 481 . . . . . . . 8 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → suc 𝑧 ∈ ω)
43 ovex 7420 . . . . . . . . . 10 (𝐴o suc 𝑧) ∈ V
4443a1i 11 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → (𝐴o suc 𝑧) ∈ V)
452anim1i 615 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 1o𝐴) → (𝐴 ∈ On ∧ 1o𝐴))
46 ondif2 8466 . . . . . . . . . . . . 13 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
4745, 46sylibr 234 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 1o𝐴) → 𝐴 ∈ (On ∖ 2o))
48 nnon 7848 . . . . . . . . . . . . 13 (suc 𝑧 ∈ ω → suc 𝑧 ∈ On)
4941, 48syl 17 . . . . . . . . . . . 12 (𝑧 ∈ ω → suc 𝑧 ∈ On)
50 oeworde 8557 . . . . . . . . . . . 12 ((𝐴 ∈ (On ∖ 2o) ∧ suc 𝑧 ∈ On) → suc 𝑧 ⊆ (𝐴o suc 𝑧))
5147, 49, 50syl2an 596 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → suc 𝑧 ⊆ (𝐴o suc 𝑧))
52 vex 3451 . . . . . . . . . . . . 13 𝑧 ∈ V
5352sucid 6416 . . . . . . . . . . . 12 𝑧 ∈ suc 𝑧
5453a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → 𝑧 ∈ suc 𝑧)
5551, 54sseldd 3947 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → 𝑧 ∈ (𝐴o suc 𝑧))
56 eqidd 2730 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → (𝐴o suc 𝑧) = (𝐴o suc 𝑧))
5755, 42, 563jca 1128 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → (𝑧 ∈ (𝐴o suc 𝑧) ∧ suc 𝑧 ∈ ω ∧ (𝐴o suc 𝑧) = (𝐴o suc 𝑧)))
58 eleq2 2817 . . . . . . . . . 10 (𝑦 = (𝐴o suc 𝑧) → (𝑧𝑦𝑧 ∈ (𝐴o suc 𝑧)))
59 eqeq1 2733 . . . . . . . . . 10 (𝑦 = (𝐴o suc 𝑧) → (𝑦 = (𝐴o suc 𝑧) ↔ (𝐴o suc 𝑧) = (𝐴o suc 𝑧)))
6058, 593anbi13d 1440 . . . . . . . . 9 (𝑦 = (𝐴o suc 𝑧) → ((𝑧𝑦 ∧ suc 𝑧 ∈ ω ∧ 𝑦 = (𝐴o suc 𝑧)) ↔ (𝑧 ∈ (𝐴o suc 𝑧) ∧ suc 𝑧 ∈ ω ∧ (𝐴o suc 𝑧) = (𝐴o suc 𝑧))))
6144, 57, 60spcedv 3564 . . . . . . . 8 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → ∃𝑦(𝑧𝑦 ∧ suc 𝑧 ∈ ω ∧ 𝑦 = (𝐴o suc 𝑧)))
62 eleq1 2816 . . . . . . . . . 10 (𝑥 = suc 𝑧 → (𝑥 ∈ ω ↔ suc 𝑧 ∈ ω))
63 oveq2 7395 . . . . . . . . . . 11 (𝑥 = suc 𝑧 → (𝐴o 𝑥) = (𝐴o suc 𝑧))
6463eqeq2d 2740 . . . . . . . . . 10 (𝑥 = suc 𝑧 → (𝑦 = (𝐴o 𝑥) ↔ 𝑦 = (𝐴o suc 𝑧)))
6562, 643anbi23d 1441 . . . . . . . . 9 (𝑥 = suc 𝑧 → ((𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ (𝑧𝑦 ∧ suc 𝑧 ∈ ω ∧ 𝑦 = (𝐴o suc 𝑧))))
6665exbidv 1921 . . . . . . . 8 (𝑥 = suc 𝑧 → (∃𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ ∃𝑦(𝑧𝑦 ∧ suc 𝑧 ∈ ω ∧ 𝑦 = (𝐴o suc 𝑧))))
6742, 61, 66spcedv 3564 . . . . . . 7 (((𝐴 ∈ ω ∧ 1o𝐴) ∧ 𝑧 ∈ ω) → ∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)))
6867ex 412 . . . . . 6 ((𝐴 ∈ ω ∧ 1o𝐴) → (𝑧 ∈ ω → ∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥))))
6940, 68impbid 212 . . . . 5 ((𝐴 ∈ ω ∧ 1o𝐴) → (∃𝑥𝑦(𝑧𝑦𝑥 ∈ ω ∧ 𝑦 = (𝐴o 𝑥)) ↔ 𝑧 ∈ ω))
7029, 69bitrid 283 . . . 4 ((𝐴 ∈ ω ∧ 1o𝐴) → (𝑧 {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)} ↔ 𝑧 ∈ ω))
7170eqrdv 2727 . . 3 ((𝐴 ∈ ω ∧ 1o𝐴) → {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 = (𝐴o 𝑥)} = ω)
7219, 71eqtrid 2776 . 2 ((𝐴 ∈ ω ∧ 1o𝐴) → 𝑥 ∈ ω (𝐴o 𝑥) = ω)
7317, 72eqtrd 2764 1 ((𝐴 ∈ ω ∧ 1o𝐴) → (𝐴o ω) = ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wrex 3053  Vcvv 3447  cdif 3911  wss 3914  c0 4296   cuni 4871   ciun 4955  Oncon0 6332  Lim wlim 6333  suc csuc 6334  (class class class)co 7387  ωcom 7842  1oc1o 8427  2oc2o 8428  o coe 8433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-oexp 8440
This theorem is referenced by:  oenord1ex  43304  oaomoencom  43306
  Copyright terms: Public domain W3C validator