| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df2o3 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2o3 | ⊢ 2o = {∅, 1o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8438 | . 2 ⊢ 2o = suc 1o | |
| 2 | df-suc 6341 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
| 3 | df1o2 8444 | . . . 4 ⊢ 1o = {∅} | |
| 4 | 3 | uneq1i 4130 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
| 5 | df-pr 4595 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 6 | 4, 5 | eqtr4i 2756 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
| 7 | 1, 2, 6 | 3eqtri 2757 | 1 ⊢ 2o = {∅, 1o} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3915 ∅c0 4299 {csn 4592 {cpr 4594 suc csuc 6337 1oc1o 8430 2oc2o 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-nul 4300 df-pr 4595 df-suc 6341 df-1o 8437 df-2o 8438 |
| This theorem is referenced by: df2o2 8446 2oex 8448 nlim2 8457 ord2eln012 8464 2oconcl 8470 enpr2d 9023 map2xp 9117 snnen2o 9191 rex2dom 9200 1sdom2dom 9201 1sdomOLD 9203 cantnflem2 9650 xp2dju 10137 sdom2en01 10262 sadcf 16430 fnpr2o 17527 fnpr2ob 17528 fvprif 17531 xpsfrnel 17532 xpsfeq 17533 xpsle 17549 setcepi 18057 setc2obas 18063 setc2ohom 18064 efgi0 19657 efgi1 19658 vrgpf 19705 vrgpinv 19706 frgpuptinv 19708 frgpup2 19713 frgpup3lem 19714 frgpnabllem1 19810 dmdprdpr 19988 dprdpr 19989 xpstopnlem1 23703 xpstopnlem2 23705 xpsxmetlem 24274 xpsdsval 24276 xpsmet 24277 onint1 36444 pw2f1ocnv 43033 wepwsolem 43038 omnord1ex 43300 oege2 43303 df3o2 43309 oenord1ex 43311 oenord1 43312 oaomoencom 43313 oenassex 43314 omabs2 43328 omcl3g 43330 clsk1independent 44042 setc1onsubc 49595 |
| Copyright terms: Public domain | W3C validator |