| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df2o3 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2o3 | ⊢ 2o = {∅, 1o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8412 | . 2 ⊢ 2o = suc 1o | |
| 2 | df-suc 6326 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
| 3 | df1o2 8418 | . . . 4 ⊢ 1o = {∅} | |
| 4 | 3 | uneq1i 4123 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
| 5 | df-pr 4588 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 6 | 4, 5 | eqtr4i 2755 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
| 7 | 1, 2, 6 | 3eqtri 2756 | 1 ⊢ 2o = {∅, 1o} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3909 ∅c0 4292 {csn 4585 {cpr 4587 suc csuc 6322 1oc1o 8404 2oc2o 8405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-un 3916 df-nul 4293 df-pr 4588 df-suc 6326 df-1o 8411 df-2o 8412 |
| This theorem is referenced by: df2o2 8420 2oex 8422 nlim2 8431 ord2eln012 8438 2oconcl 8444 enpr2d 8997 map2xp 9088 snnen2o 9161 rex2dom 9169 1sdom2dom 9170 1sdomOLD 9172 cantnflem2 9619 xp2dju 10106 sdom2en01 10231 sadcf 16399 fnpr2o 17496 fnpr2ob 17497 fvprif 17500 xpsfrnel 17501 xpsfeq 17502 xpsle 17518 setcepi 18030 setc2obas 18036 setc2ohom 18037 efgi0 19634 efgi1 19635 vrgpf 19682 vrgpinv 19683 frgpuptinv 19685 frgpup2 19690 frgpup3lem 19691 frgpnabllem1 19787 dmdprdpr 19965 dprdpr 19966 xpstopnlem1 23729 xpstopnlem2 23731 xpsxmetlem 24300 xpsdsval 24302 xpsmet 24303 onint1 36430 pw2f1ocnv 43019 wepwsolem 43024 omnord1ex 43286 oege2 43289 df3o2 43295 oenord1ex 43297 oenord1 43298 oaomoencom 43299 oenassex 43300 omabs2 43314 omcl3g 43316 clsk1independent 44028 setc1onsubc 49584 |
| Copyright terms: Public domain | W3C validator |