Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df2o3 | Structured version Visualization version GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
df2o3 | ⊢ 2o = {∅, 1o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8268 | . 2 ⊢ 2o = suc 1o | |
2 | df-suc 6257 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
3 | df1o2 8279 | . . . 4 ⊢ 1o = {∅} | |
4 | 3 | uneq1i 4089 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
5 | df-pr 4561 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
6 | 4, 5 | eqtr4i 2769 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
7 | 1, 2, 6 | 3eqtri 2770 | 1 ⊢ 2o = {∅, 1o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3881 ∅c0 4253 {csn 4558 {cpr 4560 suc csuc 6253 1oc1o 8260 2oc2o 8261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-pr 4561 df-suc 6257 df-1o 8267 df-2o 8268 |
This theorem is referenced by: df2o2 8283 2oex 8284 2oconcl 8295 map2xp 8883 1sdom 8955 cantnflem2 9378 xp2dju 9863 sdom2en01 9989 sadcf 16088 fnpr2o 17185 fnpr2ob 17186 fvprif 17189 xpsfrnel 17190 xpsfeq 17191 xpsle 17207 setcepi 17719 setc2obas 17725 setc2ohom 17726 efgi0 19241 efgi1 19242 vrgpf 19289 vrgpinv 19290 frgpuptinv 19292 frgpup2 19297 frgpup3lem 19298 frgpnabllem1 19389 dmdprdpr 19567 dprdpr 19568 xpstopnlem1 22868 xpstopnlem2 22870 xpsxmetlem 23440 xpsdsval 23442 xpsmet 23443 onint1 34565 pw2f1ocnv 40775 wepwsolem 40783 df3o2 41523 clsk1independent 41545 |
Copyright terms: Public domain | W3C validator |