| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df2o3 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2o3 | ⊢ 2o = {∅, 1o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8386 | . 2 ⊢ 2o = suc 1o | |
| 2 | df-suc 6312 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
| 3 | df1o2 8392 | . . . 4 ⊢ 1o = {∅} | |
| 4 | 3 | uneq1i 4111 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
| 5 | df-pr 4576 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 6 | 4, 5 | eqtr4i 2757 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
| 7 | 1, 2, 6 | 3eqtri 2758 | 1 ⊢ 2o = {∅, 1o} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3895 ∅c0 4280 {csn 4573 {cpr 4575 suc csuc 6308 1oc1o 8378 2oc2o 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-nul 4281 df-pr 4576 df-suc 6312 df-1o 8385 df-2o 8386 |
| This theorem is referenced by: df2o2 8394 2oex 8396 nlim2 8405 ord2eln012 8412 2oconcl 8418 enpr2d 8970 map2xp 9060 snnen2o 9129 rex2dom 9137 1sdom2dom 9138 cantnflem2 9580 xp2dju 10068 sdom2en01 10193 sadcf 16364 fnpr2o 17461 fnpr2ob 17462 fvprif 17465 xpsfrnel 17466 xpsfeq 17467 xpsle 17483 setcepi 17995 setc2obas 18001 setc2ohom 18002 efgi0 19632 efgi1 19633 vrgpf 19680 vrgpinv 19681 frgpuptinv 19683 frgpup2 19688 frgpup3lem 19689 frgpnabllem1 19785 dmdprdpr 19963 dprdpr 19964 xpstopnlem1 23724 xpstopnlem2 23726 xpsxmetlem 24294 xpsdsval 24296 xpsmet 24297 onint1 36493 pw2f1ocnv 43140 wepwsolem 43145 omnord1ex 43407 oege2 43410 df3o2 43416 oenord1ex 43418 oenord1 43419 oaomoencom 43420 oenassex 43421 omabs2 43435 omcl3g 43437 clsk1independent 44149 setc1onsubc 49713 |
| Copyright terms: Public domain | W3C validator |