| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df2o3 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2o3 | ⊢ 2o = {∅, 1o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8435 | . 2 ⊢ 2o = suc 1o | |
| 2 | df-suc 6338 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
| 3 | df1o2 8441 | . . . 4 ⊢ 1o = {∅} | |
| 4 | 3 | uneq1i 4127 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
| 5 | df-pr 4592 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 6 | 4, 5 | eqtr4i 2755 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
| 7 | 1, 2, 6 | 3eqtri 2756 | 1 ⊢ 2o = {∅, 1o} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3912 ∅c0 4296 {csn 4589 {cpr 4591 suc csuc 6334 1oc1o 8427 2oc2o 8428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-nul 4297 df-pr 4592 df-suc 6338 df-1o 8434 df-2o 8435 |
| This theorem is referenced by: df2o2 8443 2oex 8445 nlim2 8454 ord2eln012 8461 2oconcl 8467 enpr2d 9020 map2xp 9111 snnen2o 9184 rex2dom 9193 1sdom2dom 9194 1sdomOLD 9196 cantnflem2 9643 xp2dju 10130 sdom2en01 10255 sadcf 16423 fnpr2o 17520 fnpr2ob 17521 fvprif 17524 xpsfrnel 17525 xpsfeq 17526 xpsle 17542 setcepi 18050 setc2obas 18056 setc2ohom 18057 efgi0 19650 efgi1 19651 vrgpf 19698 vrgpinv 19699 frgpuptinv 19701 frgpup2 19706 frgpup3lem 19707 frgpnabllem1 19803 dmdprdpr 19981 dprdpr 19982 xpstopnlem1 23696 xpstopnlem2 23698 xpsxmetlem 24267 xpsdsval 24269 xpsmet 24270 onint1 36437 pw2f1ocnv 43026 wepwsolem 43031 omnord1ex 43293 oege2 43296 df3o2 43302 oenord1ex 43304 oenord1 43305 oaomoencom 43306 oenassex 43307 omabs2 43321 omcl3g 43323 clsk1independent 44035 setc1onsubc 49591 |
| Copyright terms: Public domain | W3C validator |