Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df2o3 | Structured version Visualization version GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
df2o3 | ⊢ 2o = {∅, 1o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8298 | . 2 ⊢ 2o = suc 1o | |
2 | df-suc 6272 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
3 | df1o2 8304 | . . . 4 ⊢ 1o = {∅} | |
4 | 3 | uneq1i 4093 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
5 | df-pr 4564 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
6 | 4, 5 | eqtr4i 2769 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
7 | 1, 2, 6 | 3eqtri 2770 | 1 ⊢ 2o = {∅, 1o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3885 ∅c0 4256 {csn 4561 {cpr 4563 suc csuc 6268 1oc1o 8290 2oc2o 8291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-pr 4564 df-suc 6272 df-1o 8297 df-2o 8298 |
This theorem is referenced by: df2o2 8306 2oex 8308 nlim2 8320 ord2eln012 8327 2oconcl 8333 map2xp 8934 1sdom 9025 snnen2o 9026 cantnflem2 9448 xp2dju 9932 sdom2en01 10058 sadcf 16160 fnpr2o 17268 fnpr2ob 17269 fvprif 17272 xpsfrnel 17273 xpsfeq 17274 xpsle 17290 setcepi 17803 setc2obas 17809 setc2ohom 17810 efgi0 19326 efgi1 19327 vrgpf 19374 vrgpinv 19375 frgpuptinv 19377 frgpup2 19382 frgpup3lem 19383 frgpnabllem1 19474 dmdprdpr 19652 dprdpr 19653 xpstopnlem1 22960 xpstopnlem2 22962 xpsxmetlem 23532 xpsdsval 23534 xpsmet 23535 onint1 34638 pw2f1ocnv 40859 wepwsolem 40867 df3o2 41634 clsk1independent 41656 |
Copyright terms: Public domain | W3C validator |