Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df2o3 | Structured version Visualization version GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
df2o3 | ⊢ 2o = {∅, 1o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8119 | . 2 ⊢ 2o = suc 1o | |
2 | df-suc 6180 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
3 | df1o2 8132 | . . . 4 ⊢ 1o = {∅} | |
4 | 3 | uneq1i 4066 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
5 | df-pr 4528 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
6 | 4, 5 | eqtr4i 2784 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
7 | 1, 2, 6 | 3eqtri 2785 | 1 ⊢ 2o = {∅, 1o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∪ cun 3858 ∅c0 4227 {csn 4525 {cpr 4527 suc csuc 6176 1oc1o 8111 2oc2o 8112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-dif 3863 df-un 3865 df-nul 4228 df-pr 4528 df-suc 6180 df-1o 8118 df-2o 8119 |
This theorem is referenced by: df2o2 8134 2oconcl 8144 map2xp 8722 1sdom 8772 cantnflem2 9199 xp2dju 9649 sdom2en01 9775 sadcf 15865 fnpr2o 16901 fnpr2ob 16902 fvprif 16905 xpsfrnel 16906 xpsfeq 16907 xpsle 16923 setcepi 17427 efgi0 18926 efgi1 18927 vrgpf 18974 vrgpinv 18975 frgpuptinv 18977 frgpup2 18982 frgpup3lem 18983 frgpnabllem1 19074 dmdprdpr 19252 dprdpr 19253 xpstopnlem1 22522 xpstopnlem2 22524 xpsxmetlem 23094 xpsdsval 23096 xpsmet 23097 onint1 34221 pw2f1ocnv 40386 wepwsolem 40394 df3o2 41135 clsk1independent 41157 |
Copyright terms: Public domain | W3C validator |