| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df2o3 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2o3 | ⊢ 2o = {∅, 1o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8486 | . 2 ⊢ 2o = suc 1o | |
| 2 | df-suc 6363 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
| 3 | df1o2 8492 | . . . 4 ⊢ 1o = {∅} | |
| 4 | 3 | uneq1i 4144 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
| 5 | df-pr 4609 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 6 | 4, 5 | eqtr4i 2762 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
| 7 | 1, 2, 6 | 3eqtri 2763 | 1 ⊢ 2o = {∅, 1o} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3929 ∅c0 4313 {csn 4606 {cpr 4608 suc csuc 6359 1oc1o 8478 2oc2o 8479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-un 3936 df-nul 4314 df-pr 4609 df-suc 6363 df-1o 8485 df-2o 8486 |
| This theorem is referenced by: df2o2 8494 2oex 8496 nlim2 8507 ord2eln012 8514 2oconcl 8520 enpr2d 9068 map2xp 9166 snnen2o 9250 rex2dom 9259 1sdom2dom 9260 1sdomOLD 9262 cantnflem2 9709 xp2dju 10196 sdom2en01 10321 sadcf 16477 fnpr2o 17576 fnpr2ob 17577 fvprif 17580 xpsfrnel 17581 xpsfeq 17582 xpsle 17598 setcepi 18106 setc2obas 18112 setc2ohom 18113 efgi0 19706 efgi1 19707 vrgpf 19754 vrgpinv 19755 frgpuptinv 19757 frgpup2 19762 frgpup3lem 19763 frgpnabllem1 19859 dmdprdpr 20037 dprdpr 20038 xpstopnlem1 23752 xpstopnlem2 23754 xpsxmetlem 24323 xpsdsval 24325 xpsmet 24326 onint1 36472 pw2f1ocnv 43028 wepwsolem 43033 omnord1ex 43295 oege2 43298 df3o2 43304 oenord1ex 43306 oenord1 43307 oaomoencom 43308 oenassex 43309 omabs2 43323 omcl3g 43325 clsk1independent 44037 setc1onsubc 49446 |
| Copyright terms: Public domain | W3C validator |