![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df2o3 | Structured version Visualization version GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
df2o3 | ⊢ 2o = {∅, 1o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8473 | . 2 ⊢ 2o = suc 1o | |
2 | df-suc 6370 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
3 | df1o2 8479 | . . . 4 ⊢ 1o = {∅} | |
4 | 3 | uneq1i 4159 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
5 | df-pr 4631 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
6 | 4, 5 | eqtr4i 2762 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
7 | 1, 2, 6 | 3eqtri 2763 | 1 ⊢ 2o = {∅, 1o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∪ cun 3946 ∅c0 4322 {csn 4628 {cpr 4630 suc csuc 6366 1oc1o 8465 2oc2o 8466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-dif 3951 df-un 3953 df-nul 4323 df-pr 4631 df-suc 6370 df-1o 8472 df-2o 8473 |
This theorem is referenced by: df2o2 8481 2oex 8483 nlim2 8496 ord2eln012 8503 2oconcl 8509 enpr2d 9055 map2xp 9153 snnen2o 9243 rex2dom 9252 1sdom2dom 9253 1sdomOLD 9255 cantnflem2 9691 xp2dju 10177 sdom2en01 10303 sadcf 16401 fnpr2o 17510 fnpr2ob 17511 fvprif 17514 xpsfrnel 17515 xpsfeq 17516 xpsle 17532 setcepi 18048 setc2obas 18054 setc2ohom 18055 efgi0 19636 efgi1 19637 vrgpf 19684 vrgpinv 19685 frgpuptinv 19687 frgpup2 19692 frgpup3lem 19693 frgpnabllem1 19789 dmdprdpr 19967 dprdpr 19968 xpstopnlem1 23633 xpstopnlem2 23635 xpsxmetlem 24205 xpsdsval 24207 xpsmet 24208 onint1 35798 pw2f1ocnv 42239 wepwsolem 42247 omnord1ex 42517 oege2 42520 df3o2 42526 oenord1ex 42528 oenord1 42529 oaomoencom 42530 oenassex 42531 omabs2 42545 omcl3g 42547 clsk1independent 43260 |
Copyright terms: Public domain | W3C validator |