![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df2o3 | Structured version Visualization version GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
df2o3 | ⊢ 2o = {∅, 1o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8506 | . 2 ⊢ 2o = suc 1o | |
2 | df-suc 6392 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
3 | df1o2 8512 | . . . 4 ⊢ 1o = {∅} | |
4 | 3 | uneq1i 4174 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
5 | df-pr 4634 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
6 | 4, 5 | eqtr4i 2766 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
7 | 1, 2, 6 | 3eqtri 2767 | 1 ⊢ 2o = {∅, 1o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3961 ∅c0 4339 {csn 4631 {cpr 4633 suc csuc 6388 1oc1o 8498 2oc2o 8499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-un 3968 df-nul 4340 df-pr 4634 df-suc 6392 df-1o 8505 df-2o 8506 |
This theorem is referenced by: df2o2 8514 2oex 8516 nlim2 8527 ord2eln012 8534 2oconcl 8540 enpr2d 9088 map2xp 9186 snnen2o 9271 rex2dom 9280 1sdom2dom 9281 1sdomOLD 9283 cantnflem2 9728 xp2dju 10215 sdom2en01 10340 sadcf 16487 fnpr2o 17604 fnpr2ob 17605 fvprif 17608 xpsfrnel 17609 xpsfeq 17610 xpsle 17626 setcepi 18142 setc2obas 18148 setc2ohom 18149 efgi0 19753 efgi1 19754 vrgpf 19801 vrgpinv 19802 frgpuptinv 19804 frgpup2 19809 frgpup3lem 19810 frgpnabllem1 19906 dmdprdpr 20084 dprdpr 20085 xpstopnlem1 23833 xpstopnlem2 23835 xpsxmetlem 24405 xpsdsval 24407 xpsmet 24408 onint1 36432 pw2f1ocnv 43026 wepwsolem 43031 omnord1ex 43294 oege2 43297 df3o2 43303 oenord1ex 43305 oenord1 43306 oaomoencom 43307 oenassex 43308 omabs2 43322 omcl3g 43324 clsk1independent 44036 |
Copyright terms: Public domain | W3C validator |