![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df2o3 | Structured version Visualization version GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
df2o3 | ⊢ 2o = {∅, 1o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8523 | . 2 ⊢ 2o = suc 1o | |
2 | df-suc 6401 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
3 | df1o2 8529 | . . . 4 ⊢ 1o = {∅} | |
4 | 3 | uneq1i 4187 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
5 | df-pr 4651 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
6 | 4, 5 | eqtr4i 2771 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
7 | 1, 2, 6 | 3eqtri 2772 | 1 ⊢ 2o = {∅, 1o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3974 ∅c0 4352 {csn 4648 {cpr 4650 suc csuc 6397 1oc1o 8515 2oc2o 8516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-pr 4651 df-suc 6401 df-1o 8522 df-2o 8523 |
This theorem is referenced by: df2o2 8531 2oex 8533 nlim2 8546 ord2eln012 8553 2oconcl 8559 enpr2d 9115 map2xp 9213 snnen2o 9300 rex2dom 9309 1sdom2dom 9310 1sdomOLD 9312 cantnflem2 9759 xp2dju 10246 sdom2en01 10371 sadcf 16499 fnpr2o 17617 fnpr2ob 17618 fvprif 17621 xpsfrnel 17622 xpsfeq 17623 xpsle 17639 setcepi 18155 setc2obas 18161 setc2ohom 18162 efgi0 19762 efgi1 19763 vrgpf 19810 vrgpinv 19811 frgpuptinv 19813 frgpup2 19818 frgpup3lem 19819 frgpnabllem1 19915 dmdprdpr 20093 dprdpr 20094 xpstopnlem1 23838 xpstopnlem2 23840 xpsxmetlem 24410 xpsdsval 24412 xpsmet 24413 onint1 36415 pw2f1ocnv 42994 wepwsolem 42999 omnord1ex 43266 oege2 43269 df3o2 43275 oenord1ex 43277 oenord1 43278 oaomoencom 43279 oenassex 43280 omabs2 43294 omcl3g 43296 clsk1independent 44008 |
Copyright terms: Public domain | W3C validator |