| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df2o3 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2o3 | ⊢ 2o = {∅, 1o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8489 | . 2 ⊢ 2o = suc 1o | |
| 2 | df-suc 6369 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
| 3 | df1o2 8495 | . . . 4 ⊢ 1o = {∅} | |
| 4 | 3 | uneq1i 4144 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
| 5 | df-pr 4609 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 6 | 4, 5 | eqtr4i 2760 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
| 7 | 1, 2, 6 | 3eqtri 2761 | 1 ⊢ 2o = {∅, 1o} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∪ cun 3929 ∅c0 4313 {csn 4606 {cpr 4608 suc csuc 6365 1oc1o 8481 2oc2o 8482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-dif 3934 df-un 3936 df-nul 4314 df-pr 4609 df-suc 6369 df-1o 8488 df-2o 8489 |
| This theorem is referenced by: df2o2 8497 2oex 8499 nlim2 8510 ord2eln012 8517 2oconcl 8523 enpr2d 9071 map2xp 9169 snnen2o 9255 rex2dom 9264 1sdom2dom 9265 1sdomOLD 9267 cantnflem2 9712 xp2dju 10199 sdom2en01 10324 sadcf 16473 fnpr2o 17574 fnpr2ob 17575 fvprif 17578 xpsfrnel 17579 xpsfeq 17580 xpsle 17596 setcepi 18105 setc2obas 18111 setc2ohom 18112 efgi0 19707 efgi1 19708 vrgpf 19755 vrgpinv 19756 frgpuptinv 19758 frgpup2 19763 frgpup3lem 19764 frgpnabllem1 19860 dmdprdpr 20038 dprdpr 20039 xpstopnlem1 23764 xpstopnlem2 23766 xpsxmetlem 24335 xpsdsval 24337 xpsmet 24338 onint1 36425 pw2f1ocnv 43027 wepwsolem 43032 omnord1ex 43294 oege2 43297 df3o2 43303 oenord1ex 43305 oenord1 43306 oaomoencom 43307 oenassex 43308 omabs2 43322 omcl3g 43324 clsk1independent 44036 |
| Copyright terms: Public domain | W3C validator |