|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > df2o3 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| df2o3 | ⊢ 2o = {∅, 1o} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-2o 8508 | . 2 ⊢ 2o = suc 1o | |
| 2 | df-suc 6389 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
| 3 | df1o2 8514 | . . . 4 ⊢ 1o = {∅} | |
| 4 | 3 | uneq1i 4163 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) | 
| 5 | df-pr 4628 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 6 | 4, 5 | eqtr4i 2767 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} | 
| 7 | 1, 2, 6 | 3eqtri 2768 | 1 ⊢ 2o = {∅, 1o} | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 ∪ cun 3948 ∅c0 4332 {csn 4625 {cpr 4627 suc csuc 6385 1oc1o 8500 2oc2o 8501 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-dif 3953 df-un 3955 df-nul 4333 df-pr 4628 df-suc 6389 df-1o 8507 df-2o 8508 | 
| This theorem is referenced by: df2o2 8516 2oex 8518 nlim2 8529 ord2eln012 8536 2oconcl 8542 enpr2d 9090 map2xp 9188 snnen2o 9274 rex2dom 9283 1sdom2dom 9284 1sdomOLD 9286 cantnflem2 9731 xp2dju 10218 sdom2en01 10343 sadcf 16491 fnpr2o 17603 fnpr2ob 17604 fvprif 17607 xpsfrnel 17608 xpsfeq 17609 xpsle 17625 setcepi 18134 setc2obas 18140 setc2ohom 18141 efgi0 19739 efgi1 19740 vrgpf 19787 vrgpinv 19788 frgpuptinv 19790 frgpup2 19795 frgpup3lem 19796 frgpnabllem1 19892 dmdprdpr 20070 dprdpr 20071 xpstopnlem1 23818 xpstopnlem2 23820 xpsxmetlem 24390 xpsdsval 24392 xpsmet 24393 onint1 36451 pw2f1ocnv 43054 wepwsolem 43059 omnord1ex 43322 oege2 43325 df3o2 43331 oenord1ex 43333 oenord1 43334 oaomoencom 43335 oenassex 43336 omabs2 43350 omcl3g 43352 clsk1independent 44064 | 
| Copyright terms: Public domain | W3C validator |