| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df2o3 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2o3 | ⊢ 2o = {∅, 1o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8412 | . 2 ⊢ 2o = suc 1o | |
| 2 | df-suc 6326 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
| 3 | df1o2 8418 | . . . 4 ⊢ 1o = {∅} | |
| 4 | 3 | uneq1i 4123 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
| 5 | df-pr 4588 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 6 | 4, 5 | eqtr4i 2755 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
| 7 | 1, 2, 6 | 3eqtri 2756 | 1 ⊢ 2o = {∅, 1o} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3909 ∅c0 4292 {csn 4585 {cpr 4587 suc csuc 6322 1oc1o 8404 2oc2o 8405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-un 3916 df-nul 4293 df-pr 4588 df-suc 6326 df-1o 8411 df-2o 8412 |
| This theorem is referenced by: df2o2 8420 2oex 8422 nlim2 8431 ord2eln012 8438 2oconcl 8444 enpr2d 8997 map2xp 9088 snnen2o 9161 rex2dom 9169 1sdom2dom 9170 1sdomOLD 9172 cantnflem2 9619 xp2dju 10106 sdom2en01 10231 sadcf 16399 fnpr2o 17496 fnpr2ob 17497 fvprif 17500 xpsfrnel 17501 xpsfeq 17502 xpsle 17518 setcepi 18026 setc2obas 18032 setc2ohom 18033 efgi0 19626 efgi1 19627 vrgpf 19674 vrgpinv 19675 frgpuptinv 19677 frgpup2 19682 frgpup3lem 19683 frgpnabllem1 19779 dmdprdpr 19957 dprdpr 19958 xpstopnlem1 23672 xpstopnlem2 23674 xpsxmetlem 24243 xpsdsval 24245 xpsmet 24246 onint1 36410 pw2f1ocnv 42999 wepwsolem 43004 omnord1ex 43266 oege2 43269 df3o2 43275 oenord1ex 43277 oenord1 43278 oaomoencom 43279 oenassex 43280 omabs2 43294 omcl3g 43296 clsk1independent 44008 setc1onsubc 49564 |
| Copyright terms: Public domain | W3C validator |