| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df2o3 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2o3 | ⊢ 2o = {∅, 1o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8389 | . 2 ⊢ 2o = suc 1o | |
| 2 | df-suc 6313 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
| 3 | df1o2 8395 | . . . 4 ⊢ 1o = {∅} | |
| 4 | 3 | uneq1i 4115 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
| 5 | df-pr 4580 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 6 | 4, 5 | eqtr4i 2755 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
| 7 | 1, 2, 6 | 3eqtri 2756 | 1 ⊢ 2o = {∅, 1o} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3901 ∅c0 4284 {csn 4577 {cpr 4579 suc csuc 6309 1oc1o 8381 2oc2o 8382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-dif 3906 df-un 3908 df-nul 4285 df-pr 4580 df-suc 6313 df-1o 8388 df-2o 8389 |
| This theorem is referenced by: df2o2 8397 2oex 8399 nlim2 8408 ord2eln012 8415 2oconcl 8421 enpr2d 8974 map2xp 9064 snnen2o 9134 rex2dom 9142 1sdom2dom 9143 cantnflem2 9586 xp2dju 10071 sdom2en01 10196 sadcf 16364 fnpr2o 17461 fnpr2ob 17462 fvprif 17465 xpsfrnel 17466 xpsfeq 17467 xpsle 17483 setcepi 17995 setc2obas 18001 setc2ohom 18002 efgi0 19599 efgi1 19600 vrgpf 19647 vrgpinv 19648 frgpuptinv 19650 frgpup2 19655 frgpup3lem 19656 frgpnabllem1 19752 dmdprdpr 19930 dprdpr 19931 xpstopnlem1 23694 xpstopnlem2 23696 xpsxmetlem 24265 xpsdsval 24267 xpsmet 24268 onint1 36427 pw2f1ocnv 43014 wepwsolem 43019 omnord1ex 43281 oege2 43284 df3o2 43290 oenord1ex 43292 oenord1 43293 oaomoencom 43294 oenassex 43295 omabs2 43309 omcl3g 43311 clsk1independent 44023 setc1onsubc 49591 |
| Copyright terms: Public domain | W3C validator |