Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oenord1 Structured version   Visualization version   GIF version

Theorem oenord1 43312
Description: When two ordinals (both at least as large as two) are raised to the same power, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 4-Feb-2025.)
Assertion
Ref Expression
oenord1 𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐))
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem oenord1
StepHypRef Expression
1 oenord1ex 43311 . 2 ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))
2 2on 8450 . . . 4 2o ∈ On
3 1oex 8447 . . . . . 6 1o ∈ V
43prid2 4730 . . . . 5 1o ∈ {∅, 1o}
5 df2o3 8445 . . . . 5 2o = {∅, 1o}
64, 5eleqtrri 2828 . . . 4 1o ∈ 2o
7 ondif2 8469 . . . 4 (2o ∈ (On ∖ 2o) ↔ (2o ∈ On ∧ 1o ∈ 2o))
82, 6, 7mpbir2an 711 . . 3 2o ∈ (On ∖ 2o)
9 3on 8453 . . . . 5 3o ∈ On
103tpid2 4737 . . . . . 6 1o ∈ {∅, 1o, 2o}
11 df3o2 43309 . . . . . 6 3o = {∅, 1o, 2o}
1210, 11eleqtrri 2828 . . . . 5 1o ∈ 3o
13 ondif2 8469 . . . . 5 (3o ∈ (On ∖ 2o) ↔ (3o ∈ On ∧ 1o ∈ 3o))
149, 12, 13mpbir2an 711 . . . 4 3o ∈ (On ∖ 2o)
15 omelon 9606 . . . . . 6 ω ∈ On
16 peano1 7868 . . . . . 6 ∅ ∈ ω
17 ondif1 8468 . . . . . 6 (ω ∈ (On ∖ 1o) ↔ (ω ∈ On ∧ ∅ ∈ ω))
1815, 16, 17mpbir2an 711 . . . . 5 ω ∈ (On ∖ 1o)
19 oveq2 7398 . . . . . . . . 9 (𝑐 = ω → (2oo 𝑐) = (2oo ω))
20 oveq2 7398 . . . . . . . . 9 (𝑐 = ω → (3oo 𝑐) = (3oo ω))
2119, 20eleq12d 2823 . . . . . . . 8 (𝑐 = ω → ((2oo 𝑐) ∈ (3oo 𝑐) ↔ (2oo ω) ∈ (3oo ω)))
2221bibi2d 342 . . . . . . 7 (𝑐 = ω → ((2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐)) ↔ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))))
2322notbid 318 . . . . . 6 (𝑐 = ω → (¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐)) ↔ ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))))
2423rspcev 3591 . . . . 5 ((ω ∈ (On ∖ 1o) ∧ ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))) → ∃𝑐 ∈ (On ∖ 1o) ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐)))
2518, 24mpan 690 . . . 4 (¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω)) → ∃𝑐 ∈ (On ∖ 1o) ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐)))
26 eleq2 2818 . . . . . . . 8 (𝑏 = 3o → (2o𝑏 ↔ 2o ∈ 3o))
27 oveq1 7397 . . . . . . . . 9 (𝑏 = 3o → (𝑏o 𝑐) = (3oo 𝑐))
2827eleq2d 2815 . . . . . . . 8 (𝑏 = 3o → ((2oo 𝑐) ∈ (𝑏o 𝑐) ↔ (2oo 𝑐) ∈ (3oo 𝑐)))
2926, 28bibi12d 345 . . . . . . 7 (𝑏 = 3o → ((2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)) ↔ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐))))
3029notbid 318 . . . . . 6 (𝑏 = 3o → (¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)) ↔ ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐))))
3130rexbidv 3158 . . . . 5 (𝑏 = 3o → (∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)) ↔ ∃𝑐 ∈ (On ∖ 1o) ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐))))
3231rspcev 3591 . . . 4 ((3o ∈ (On ∖ 2o) ∧ ∃𝑐 ∈ (On ∖ 1o) ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐))) → ∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)))
3314, 25, 32sylancr 587 . . 3 (¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω)) → ∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)))
34 eleq1 2817 . . . . . . 7 (𝑎 = 2o → (𝑎𝑏 ↔ 2o𝑏))
35 oveq1 7397 . . . . . . . 8 (𝑎 = 2o → (𝑎o 𝑐) = (2oo 𝑐))
3635eleq1d 2814 . . . . . . 7 (𝑎 = 2o → ((𝑎o 𝑐) ∈ (𝑏o 𝑐) ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)))
3734, 36bibi12d 345 . . . . . 6 (𝑎 = 2o → ((𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)) ↔ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐))))
3837notbid 318 . . . . 5 (𝑎 = 2o → (¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)) ↔ ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐))))
39382rexbidv 3203 . . . 4 (𝑎 = 2o → (∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)) ↔ ∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐))))
4039rspcev 3591 . . 3 ((2o ∈ (On ∖ 2o) ∧ ∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐))) → ∃𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)))
418, 33, 40sylancr 587 . 2 (¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω)) → ∃𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)))
421, 41ax-mp 5 1 𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wrex 3054  cdif 3914  c0 4299  {cpr 4594  {ctp 4596  Oncon0 6335  (class class class)co 7390  ωcom 7845  1oc1o 8430  2oc2o 8431  3oc3o 8432  o coe 8436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-3o 8439  df-oadd 8441  df-omul 8442  df-oexp 8443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator