Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oenord1 Structured version   Visualization version   GIF version

Theorem oenord1 43278
Description: When two ordinals (both at least as large as two) are raised to the same power, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 4-Feb-2025.)
Assertion
Ref Expression
oenord1 𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐))
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem oenord1
StepHypRef Expression
1 oenord1ex 43277 . 2 ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))
2 2on 8536 . . . 4 2o ∈ On
3 1oex 8532 . . . . . 6 1o ∈ V
43prid2 4788 . . . . 5 1o ∈ {∅, 1o}
5 df2o3 8530 . . . . 5 2o = {∅, 1o}
64, 5eleqtrri 2843 . . . 4 1o ∈ 2o
7 ondif2 8558 . . . 4 (2o ∈ (On ∖ 2o) ↔ (2o ∈ On ∧ 1o ∈ 2o))
82, 6, 7mpbir2an 710 . . 3 2o ∈ (On ∖ 2o)
9 3on 8540 . . . . 5 3o ∈ On
103tpid2 4795 . . . . . 6 1o ∈ {∅, 1o, 2o}
11 df3o2 43275 . . . . . 6 3o = {∅, 1o, 2o}
1210, 11eleqtrri 2843 . . . . 5 1o ∈ 3o
13 ondif2 8558 . . . . 5 (3o ∈ (On ∖ 2o) ↔ (3o ∈ On ∧ 1o ∈ 3o))
149, 12, 13mpbir2an 710 . . . 4 3o ∈ (On ∖ 2o)
15 omelon 9715 . . . . . 6 ω ∈ On
16 peano1 7927 . . . . . 6 ∅ ∈ ω
17 ondif1 8557 . . . . . 6 (ω ∈ (On ∖ 1o) ↔ (ω ∈ On ∧ ∅ ∈ ω))
1815, 16, 17mpbir2an 710 . . . . 5 ω ∈ (On ∖ 1o)
19 oveq2 7456 . . . . . . . . 9 (𝑐 = ω → (2oo 𝑐) = (2oo ω))
20 oveq2 7456 . . . . . . . . 9 (𝑐 = ω → (3oo 𝑐) = (3oo ω))
2119, 20eleq12d 2838 . . . . . . . 8 (𝑐 = ω → ((2oo 𝑐) ∈ (3oo 𝑐) ↔ (2oo ω) ∈ (3oo ω)))
2221bibi2d 342 . . . . . . 7 (𝑐 = ω → ((2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐)) ↔ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))))
2322notbid 318 . . . . . 6 (𝑐 = ω → (¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐)) ↔ ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))))
2423rspcev 3635 . . . . 5 ((ω ∈ (On ∖ 1o) ∧ ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))) → ∃𝑐 ∈ (On ∖ 1o) ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐)))
2518, 24mpan 689 . . . 4 (¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω)) → ∃𝑐 ∈ (On ∖ 1o) ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐)))
26 eleq2 2833 . . . . . . . 8 (𝑏 = 3o → (2o𝑏 ↔ 2o ∈ 3o))
27 oveq1 7455 . . . . . . . . 9 (𝑏 = 3o → (𝑏o 𝑐) = (3oo 𝑐))
2827eleq2d 2830 . . . . . . . 8 (𝑏 = 3o → ((2oo 𝑐) ∈ (𝑏o 𝑐) ↔ (2oo 𝑐) ∈ (3oo 𝑐)))
2926, 28bibi12d 345 . . . . . . 7 (𝑏 = 3o → ((2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)) ↔ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐))))
3029notbid 318 . . . . . 6 (𝑏 = 3o → (¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)) ↔ ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐))))
3130rexbidv 3185 . . . . 5 (𝑏 = 3o → (∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)) ↔ ∃𝑐 ∈ (On ∖ 1o) ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐))))
3231rspcev 3635 . . . 4 ((3o ∈ (On ∖ 2o) ∧ ∃𝑐 ∈ (On ∖ 1o) ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐))) → ∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)))
3314, 25, 32sylancr 586 . . 3 (¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω)) → ∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)))
34 eleq1 2832 . . . . . . 7 (𝑎 = 2o → (𝑎𝑏 ↔ 2o𝑏))
35 oveq1 7455 . . . . . . . 8 (𝑎 = 2o → (𝑎o 𝑐) = (2oo 𝑐))
3635eleq1d 2829 . . . . . . 7 (𝑎 = 2o → ((𝑎o 𝑐) ∈ (𝑏o 𝑐) ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)))
3734, 36bibi12d 345 . . . . . 6 (𝑎 = 2o → ((𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)) ↔ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐))))
3837notbid 318 . . . . 5 (𝑎 = 2o → (¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)) ↔ ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐))))
39382rexbidv 3228 . . . 4 (𝑎 = 2o → (∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)) ↔ ∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐))))
4039rspcev 3635 . . 3 ((2o ∈ (On ∖ 2o) ∧ ∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐))) → ∃𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)))
418, 33, 40sylancr 586 . 2 (¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω)) → ∃𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)))
421, 41ax-mp 5 1 𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1537  wcel 2108  wrex 3076  cdif 3973  c0 4352  {cpr 4650  {ctp 4652  Oncon0 6395  (class class class)co 7448  ωcom 7903  1oc1o 8515  2oc2o 8516  3oc3o 8517  o coe 8521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-3o 8524  df-oadd 8526  df-omul 8527  df-oexp 8528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator