Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oenord1 Structured version   Visualization version   GIF version

Theorem oenord1 43408
Description: When two ordinals (both at least as large as two) are raised to the same power, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 4-Feb-2025.)
Assertion
Ref Expression
oenord1 𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐))
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem oenord1
StepHypRef Expression
1 oenord1ex 43407 . 2 ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))
2 2on 8398 . . . 4 2o ∈ On
3 1oex 8395 . . . . . 6 1o ∈ V
43prid2 4713 . . . . 5 1o ∈ {∅, 1o}
5 df2o3 8393 . . . . 5 2o = {∅, 1o}
64, 5eleqtrri 2830 . . . 4 1o ∈ 2o
7 ondif2 8417 . . . 4 (2o ∈ (On ∖ 2o) ↔ (2o ∈ On ∧ 1o ∈ 2o))
82, 6, 7mpbir2an 711 . . 3 2o ∈ (On ∖ 2o)
9 3on 8401 . . . . 5 3o ∈ On
103tpid2 4720 . . . . . 6 1o ∈ {∅, 1o, 2o}
11 df3o2 43405 . . . . . 6 3o = {∅, 1o, 2o}
1210, 11eleqtrri 2830 . . . . 5 1o ∈ 3o
13 ondif2 8417 . . . . 5 (3o ∈ (On ∖ 2o) ↔ (3o ∈ On ∧ 1o ∈ 3o))
149, 12, 13mpbir2an 711 . . . 4 3o ∈ (On ∖ 2o)
15 omelon 9536 . . . . . 6 ω ∈ On
16 peano1 7819 . . . . . 6 ∅ ∈ ω
17 ondif1 8416 . . . . . 6 (ω ∈ (On ∖ 1o) ↔ (ω ∈ On ∧ ∅ ∈ ω))
1815, 16, 17mpbir2an 711 . . . . 5 ω ∈ (On ∖ 1o)
19 oveq2 7354 . . . . . . . . 9 (𝑐 = ω → (2oo 𝑐) = (2oo ω))
20 oveq2 7354 . . . . . . . . 9 (𝑐 = ω → (3oo 𝑐) = (3oo ω))
2119, 20eleq12d 2825 . . . . . . . 8 (𝑐 = ω → ((2oo 𝑐) ∈ (3oo 𝑐) ↔ (2oo ω) ∈ (3oo ω)))
2221bibi2d 342 . . . . . . 7 (𝑐 = ω → ((2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐)) ↔ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))))
2322notbid 318 . . . . . 6 (𝑐 = ω → (¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐)) ↔ ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))))
2423rspcev 3572 . . . . 5 ((ω ∈ (On ∖ 1o) ∧ ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))) → ∃𝑐 ∈ (On ∖ 1o) ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐)))
2518, 24mpan 690 . . . 4 (¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω)) → ∃𝑐 ∈ (On ∖ 1o) ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐)))
26 eleq2 2820 . . . . . . . 8 (𝑏 = 3o → (2o𝑏 ↔ 2o ∈ 3o))
27 oveq1 7353 . . . . . . . . 9 (𝑏 = 3o → (𝑏o 𝑐) = (3oo 𝑐))
2827eleq2d 2817 . . . . . . . 8 (𝑏 = 3o → ((2oo 𝑐) ∈ (𝑏o 𝑐) ↔ (2oo 𝑐) ∈ (3oo 𝑐)))
2926, 28bibi12d 345 . . . . . . 7 (𝑏 = 3o → ((2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)) ↔ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐))))
3029notbid 318 . . . . . 6 (𝑏 = 3o → (¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)) ↔ ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐))))
3130rexbidv 3156 . . . . 5 (𝑏 = 3o → (∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)) ↔ ∃𝑐 ∈ (On ∖ 1o) ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐))))
3231rspcev 3572 . . . 4 ((3o ∈ (On ∖ 2o) ∧ ∃𝑐 ∈ (On ∖ 1o) ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐))) → ∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)))
3314, 25, 32sylancr 587 . . 3 (¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω)) → ∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)))
34 eleq1 2819 . . . . . . 7 (𝑎 = 2o → (𝑎𝑏 ↔ 2o𝑏))
35 oveq1 7353 . . . . . . . 8 (𝑎 = 2o → (𝑎o 𝑐) = (2oo 𝑐))
3635eleq1d 2816 . . . . . . 7 (𝑎 = 2o → ((𝑎o 𝑐) ∈ (𝑏o 𝑐) ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)))
3734, 36bibi12d 345 . . . . . 6 (𝑎 = 2o → ((𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)) ↔ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐))))
3837notbid 318 . . . . 5 (𝑎 = 2o → (¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)) ↔ ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐))))
39382rexbidv 3197 . . . 4 (𝑎 = 2o → (∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)) ↔ ∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐))))
4039rspcev 3572 . . 3 ((2o ∈ (On ∖ 2o) ∧ ∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐))) → ∃𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)))
418, 33, 40sylancr 587 . 2 (¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω)) → ∃𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)))
421, 41ax-mp 5 1 𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2111  wrex 3056  cdif 3894  c0 4280  {cpr 4575  {ctp 4577  Oncon0 6306  (class class class)co 7346  ωcom 7796  1oc1o 8378  2oc2o 8379  3oc3o 8380  o coe 8384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-3o 8387  df-oadd 8389  df-omul 8390  df-oexp 8391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator