Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oenord1 Structured version   Visualization version   GIF version

Theorem oenord1 43340
Description: When two ordinals (both at least as large as two) are raised to the same power, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 4-Feb-2025.)
Assertion
Ref Expression
oenord1 𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐))
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem oenord1
StepHypRef Expression
1 oenord1ex 43339 . 2 ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))
2 2on 8494 . . . 4 2o ∈ On
3 1oex 8490 . . . . . 6 1o ∈ V
43prid2 4739 . . . . 5 1o ∈ {∅, 1o}
5 df2o3 8488 . . . . 5 2o = {∅, 1o}
64, 5eleqtrri 2833 . . . 4 1o ∈ 2o
7 ondif2 8514 . . . 4 (2o ∈ (On ∖ 2o) ↔ (2o ∈ On ∧ 1o ∈ 2o))
82, 6, 7mpbir2an 711 . . 3 2o ∈ (On ∖ 2o)
9 3on 8498 . . . . 5 3o ∈ On
103tpid2 4746 . . . . . 6 1o ∈ {∅, 1o, 2o}
11 df3o2 43337 . . . . . 6 3o = {∅, 1o, 2o}
1210, 11eleqtrri 2833 . . . . 5 1o ∈ 3o
13 ondif2 8514 . . . . 5 (3o ∈ (On ∖ 2o) ↔ (3o ∈ On ∧ 1o ∈ 3o))
149, 12, 13mpbir2an 711 . . . 4 3o ∈ (On ∖ 2o)
15 omelon 9660 . . . . . 6 ω ∈ On
16 peano1 7884 . . . . . 6 ∅ ∈ ω
17 ondif1 8513 . . . . . 6 (ω ∈ (On ∖ 1o) ↔ (ω ∈ On ∧ ∅ ∈ ω))
1815, 16, 17mpbir2an 711 . . . . 5 ω ∈ (On ∖ 1o)
19 oveq2 7413 . . . . . . . . 9 (𝑐 = ω → (2oo 𝑐) = (2oo ω))
20 oveq2 7413 . . . . . . . . 9 (𝑐 = ω → (3oo 𝑐) = (3oo ω))
2119, 20eleq12d 2828 . . . . . . . 8 (𝑐 = ω → ((2oo 𝑐) ∈ (3oo 𝑐) ↔ (2oo ω) ∈ (3oo ω)))
2221bibi2d 342 . . . . . . 7 (𝑐 = ω → ((2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐)) ↔ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))))
2322notbid 318 . . . . . 6 (𝑐 = ω → (¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐)) ↔ ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))))
2423rspcev 3601 . . . . 5 ((ω ∈ (On ∖ 1o) ∧ ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))) → ∃𝑐 ∈ (On ∖ 1o) ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐)))
2518, 24mpan 690 . . . 4 (¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω)) → ∃𝑐 ∈ (On ∖ 1o) ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐)))
26 eleq2 2823 . . . . . . . 8 (𝑏 = 3o → (2o𝑏 ↔ 2o ∈ 3o))
27 oveq1 7412 . . . . . . . . 9 (𝑏 = 3o → (𝑏o 𝑐) = (3oo 𝑐))
2827eleq2d 2820 . . . . . . . 8 (𝑏 = 3o → ((2oo 𝑐) ∈ (𝑏o 𝑐) ↔ (2oo 𝑐) ∈ (3oo 𝑐)))
2926, 28bibi12d 345 . . . . . . 7 (𝑏 = 3o → ((2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)) ↔ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐))))
3029notbid 318 . . . . . 6 (𝑏 = 3o → (¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)) ↔ ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐))))
3130rexbidv 3164 . . . . 5 (𝑏 = 3o → (∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)) ↔ ∃𝑐 ∈ (On ∖ 1o) ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐))))
3231rspcev 3601 . . . 4 ((3o ∈ (On ∖ 2o) ∧ ∃𝑐 ∈ (On ∖ 1o) ¬ (2o ∈ 3o ↔ (2oo 𝑐) ∈ (3oo 𝑐))) → ∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)))
3314, 25, 32sylancr 587 . . 3 (¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω)) → ∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)))
34 eleq1 2822 . . . . . . 7 (𝑎 = 2o → (𝑎𝑏 ↔ 2o𝑏))
35 oveq1 7412 . . . . . . . 8 (𝑎 = 2o → (𝑎o 𝑐) = (2oo 𝑐))
3635eleq1d 2819 . . . . . . 7 (𝑎 = 2o → ((𝑎o 𝑐) ∈ (𝑏o 𝑐) ↔ (2oo 𝑐) ∈ (𝑏o 𝑐)))
3734, 36bibi12d 345 . . . . . 6 (𝑎 = 2o → ((𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)) ↔ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐))))
3837notbid 318 . . . . 5 (𝑎 = 2o → (¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)) ↔ ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐))))
39382rexbidv 3206 . . . 4 (𝑎 = 2o → (∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)) ↔ ∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐))))
4039rspcev 3601 . . 3 ((2o ∈ (On ∖ 2o) ∧ ∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (2o𝑏 ↔ (2oo 𝑐) ∈ (𝑏o 𝑐))) → ∃𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)))
418, 33, 40sylancr 587 . 2 (¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω)) → ∃𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐)))
421, 41ax-mp 5 1 𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎o 𝑐) ∈ (𝑏o 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2108  wrex 3060  cdif 3923  c0 4308  {cpr 4603  {ctp 4605  Oncon0 6352  (class class class)co 7405  ωcom 7861  1oc1o 8473  2oc2o 8474  3oc3o 8475  o coe 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-3o 8482  df-oadd 8484  df-omul 8485  df-oexp 8486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator