| Step | Hyp | Ref
| Expression |
| 1 | | eldif 3961 |
. . . . 5
⊢ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔
(𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ {∅})) |
| 2 | | velpw 4605 |
. . . . . 6
⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| 3 | | velsn 4642 |
. . . . . . 7
⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) |
| 4 | 3 | necon3bbii 2988 |
. . . . . 6
⊢ (¬
𝑥 ∈ {∅} ↔
𝑥 ≠
∅) |
| 5 | 2, 4 | anbi12i 628 |
. . . . 5
⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ {∅}) ↔ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
| 6 | 1, 5 | bitri 275 |
. . . 4
⊢ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔
(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
| 7 | | brdif 5196 |
. . . . . . 7
⊢ (𝑦( E ∖ ( E ∘ ◡𝑅))𝑥 ↔ (𝑦 E 𝑥 ∧ ¬ 𝑦( E ∘ ◡𝑅)𝑥)) |
| 8 | | epel 5587 |
. . . . . . . 8
⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) |
| 9 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
| 10 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
| 11 | 9, 10 | coep 35752 |
. . . . . . . . . 10
⊢ (𝑦( E ∘ ◡𝑅)𝑥 ↔ ∃𝑧 ∈ 𝑥 𝑦◡𝑅𝑧) |
| 12 | | vex 3484 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ V |
| 13 | 9, 12 | brcnv 5893 |
. . . . . . . . . . 11
⊢ (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦) |
| 14 | 13 | rexbii 3094 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
𝑥 𝑦◡𝑅𝑧 ↔ ∃𝑧 ∈ 𝑥 𝑧𝑅𝑦) |
| 15 | | dfrex2 3073 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
𝑥 𝑧𝑅𝑦 ↔ ¬ ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
| 16 | 11, 14, 15 | 3bitrri 298 |
. . . . . . . . 9
⊢ (¬
∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 ↔ 𝑦( E ∘ ◡𝑅)𝑥) |
| 17 | 16 | con1bii 356 |
. . . . . . . 8
⊢ (¬
𝑦( E ∘ ◡𝑅)𝑥 ↔ ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
| 18 | 8, 17 | anbi12i 628 |
. . . . . . 7
⊢ ((𝑦 E 𝑥 ∧ ¬ 𝑦( E ∘ ◡𝑅)𝑥) ↔ (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
| 19 | 7, 18 | bitri 275 |
. . . . . 6
⊢ (𝑦( E ∖ ( E ∘ ◡𝑅))𝑥 ↔ (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
| 20 | 19 | exbii 1848 |
. . . . 5
⊢
(∃𝑦 𝑦( E ∖ ( E ∘ ◡𝑅))𝑥 ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
| 21 | 10 | elrn 5904 |
. . . . 5
⊢ (𝑥 ∈ ran ( E ∖ ( E
∘ ◡𝑅)) ↔ ∃𝑦 𝑦( E ∖ ( E ∘ ◡𝑅))𝑥) |
| 22 | | df-rex 3071 |
. . . . 5
⊢
(∃𝑦 ∈
𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
| 23 | 20, 21, 22 | 3bitr4i 303 |
. . . 4
⊢ (𝑥 ∈ ran ( E ∖ ( E
∘ ◡𝑅)) ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
| 24 | 6, 23 | imbi12i 350 |
. . 3
⊢ ((𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑥 ∈ ran ( E ∖ ( E
∘ ◡𝑅))) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
| 25 | 24 | albii 1819 |
. 2
⊢
(∀𝑥(𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑥 ∈ ran ( E ∖ ( E
∘ ◡𝑅))) ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
| 26 | | df-ss 3968 |
. 2
⊢
((𝒫 𝐴
∖ {∅}) ⊆ ran ( E ∖ ( E ∘ ◡𝑅)) ↔ ∀𝑥(𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑥 ∈ ran ( E ∖ ( E
∘ ◡𝑅)))) |
| 27 | | df-fr 5637 |
. 2
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
| 28 | 25, 26, 27 | 3bitr4ri 304 |
1
⊢ (𝑅 Fr 𝐴 ↔ (𝒫 𝐴 ∖ {∅}) ⊆ ran ( E ∖
( E ∘ ◡𝑅))) |