Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffr5 Structured version   Visualization version   GIF version

Theorem dffr5 33102
Description: A quantifier-free definition of a well-founded relationship. (Contributed by Scott Fenton, 11-Apr-2011.)
Assertion
Ref Expression
dffr5 (𝑅 Fr 𝐴 ↔ (𝒫 𝐴 ∖ {∅}) ⊆ ran ( E ∖ ( E ∘ 𝑅)))

Proof of Theorem dffr5
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldif 3891 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ {∅}))
2 velpw 4502 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
3 velsn 4541 . . . . . . 7 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
43necon3bbii 3034 . . . . . 6 𝑥 ∈ {∅} ↔ 𝑥 ≠ ∅)
52, 4anbi12i 629 . . . . 5 ((𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ {∅}) ↔ (𝑥𝐴𝑥 ≠ ∅))
61, 5bitri 278 . . . 4 (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔ (𝑥𝐴𝑥 ≠ ∅))
7 brdif 5083 . . . . . . 7 (𝑦( E ∖ ( E ∘ 𝑅))𝑥 ↔ (𝑦 E 𝑥 ∧ ¬ 𝑦( E ∘ 𝑅)𝑥))
8 epel 5433 . . . . . . . 8 (𝑦 E 𝑥𝑦𝑥)
9 vex 3444 . . . . . . . . . . 11 𝑦 ∈ V
10 vex 3444 . . . . . . . . . . 11 𝑥 ∈ V
119, 10coep 33100 . . . . . . . . . 10 (𝑦( E ∘ 𝑅)𝑥 ↔ ∃𝑧𝑥 𝑦𝑅𝑧)
12 vex 3444 . . . . . . . . . . . 12 𝑧 ∈ V
139, 12brcnv 5717 . . . . . . . . . . 11 (𝑦𝑅𝑧𝑧𝑅𝑦)
1413rexbii 3210 . . . . . . . . . 10 (∃𝑧𝑥 𝑦𝑅𝑧 ↔ ∃𝑧𝑥 𝑧𝑅𝑦)
15 dfrex2 3202 . . . . . . . . . 10 (∃𝑧𝑥 𝑧𝑅𝑦 ↔ ¬ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦)
1611, 14, 153bitrri 301 . . . . . . . . 9 (¬ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦𝑦( E ∘ 𝑅)𝑥)
1716con1bii 360 . . . . . . . 8 𝑦( E ∘ 𝑅)𝑥 ↔ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦)
188, 17anbi12i 629 . . . . . . 7 ((𝑦 E 𝑥 ∧ ¬ 𝑦( E ∘ 𝑅)𝑥) ↔ (𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦))
197, 18bitri 278 . . . . . 6 (𝑦( E ∖ ( E ∘ 𝑅))𝑥 ↔ (𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦))
2019exbii 1849 . . . . 5 (∃𝑦 𝑦( E ∖ ( E ∘ 𝑅))𝑥 ↔ ∃𝑦(𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦))
2110elrn 5786 . . . . 5 (𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅)) ↔ ∃𝑦 𝑦( E ∖ ( E ∘ 𝑅))𝑥)
22 df-rex 3112 . . . . 5 (∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦 ↔ ∃𝑦(𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦))
2320, 21, 223bitr4i 306 . . . 4 (𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅)) ↔ ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)
246, 23imbi12i 354 . . 3 ((𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅))) ↔ ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
2524albii 1821 . 2 (∀𝑥(𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅))) ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
26 dfss2 3901 . 2 ((𝒫 𝐴 ∖ {∅}) ⊆ ran ( E ∖ ( E ∘ 𝑅)) ↔ ∀𝑥(𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅))))
27 df-fr 5478 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
2825, 26, 273bitr4ri 307 1 (𝑅 Fr 𝐴 ↔ (𝒫 𝐴 ∖ {∅}) ⊆ ran ( E ∖ ( E ∘ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  cdif 3878  wss 3881  c0 4243  𝒫 cpw 4497  {csn 4525   class class class wbr 5030   E cep 5429   Fr wfr 5475  ccnv 5518  ran crn 5520  ccom 5523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-eprel 5430  df-fr 5478  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator