MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluniab Structured version   Visualization version   GIF version

Theorem eluniab 4854
Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
eluniab (𝐴 {𝑥𝜑} ↔ ∃𝑥(𝐴𝑥𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eluniab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluni 4842 . 2 (𝐴 {𝑥𝜑} ↔ ∃𝑦(𝐴𝑦𝑦 ∈ {𝑥𝜑}))
2 nfv 1917 . . . 4 𝑥 𝐴𝑦
3 nfsab1 2723 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
42, 3nfan 1902 . . 3 𝑥(𝐴𝑦𝑦 ∈ {𝑥𝜑})
5 nfv 1917 . . 3 𝑦(𝐴𝑥𝜑)
6 eleq2w 2822 . . . 4 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
7 eleq1w 2821 . . . . 5 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑥𝜑}))
8 abid 2719 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
97, 8bitrdi 287 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝜑))
106, 9anbi12d 631 . . 3 (𝑦 = 𝑥 → ((𝐴𝑦𝑦 ∈ {𝑥𝜑}) ↔ (𝐴𝑥𝜑)))
114, 5, 10cbvexv1 2339 . 2 (∃𝑦(𝐴𝑦𝑦 ∈ {𝑥𝜑}) ↔ ∃𝑥(𝐴𝑥𝜑))
121, 11bitri 274 1 (𝐴 {𝑥𝜑} ↔ ∃𝑥(𝐴𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wex 1782  wcel 2106  {cab 2715   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-uni 4840
This theorem is referenced by:  elunirab  4855  dfiun2gOLD  4961  inuni  5267  elfv  6772  unielxp  7869  frrlem8  8109  frrlem10  8111  wfrlem12OLD  8151  tfrlem9  8216  dfac5lem2  9880  fin23lem30  10098  unisngl  22678  metrest  23680  aannenlem2  25489  fpwrelmapffslem  31067  dfiota3  34225  mptsnunlem  35509
  Copyright terms: Public domain W3C validator