![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluniab | Structured version Visualization version GIF version |
Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
eluniab | ⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4754 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
2 | nfv 1896 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑦 | |
3 | nfsab1 2786 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
4 | 2, 3 | nfan 1885 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
5 | nfv 1896 | . . 3 ⊢ Ⅎ𝑦(𝐴 ∈ 𝑥 ∧ 𝜑) | |
6 | eleq2w 2868 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥)) | |
7 | eleq1w 2867 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) | |
8 | abid 2781 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
9 | 7, 8 | syl6bb 288 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) |
10 | 6, 9 | anbi12d 630 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝑥 ∧ 𝜑))) |
11 | 4, 5, 10 | cbvexv1 2323 | . 2 ⊢ (∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) |
12 | 1, 11 | bitri 276 | 1 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 ∃wex 1765 ∈ wcel 2083 {cab 2777 ∪ cuni 4751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-v 3442 df-uni 4752 |
This theorem is referenced by: elunirab 4763 dfiun2g 4864 dfiun2gOLD 4865 inuni 5144 elfv 6543 unielxp 7590 wfrlem12 7825 tfrlem9 7880 dfac5lem2 9403 fin23lem30 9617 unisngl 21823 metrest 22821 aannenlem2 24605 fpwrelmapffslem 30152 frrlem8 32741 frrlem10 32743 dfiota3 32995 mptsnunlem 34171 |
Copyright terms: Public domain | W3C validator |