| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluniab | Structured version Visualization version GIF version | ||
| Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| eluniab | ⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 4862 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑦 | |
| 3 | nfsab1 2717 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
| 4 | 2, 3 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 5 | nfv 1915 | . . 3 ⊢ Ⅎ𝑦(𝐴 ∈ 𝑥 ∧ 𝜑) | |
| 6 | eleq2w 2815 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥)) | |
| 7 | eleq1w 2814 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) | |
| 8 | abid 2713 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 9 | 7, 8 | bitrdi 287 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) |
| 10 | 6, 9 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝑥 ∧ 𝜑))) |
| 11 | 4, 5, 10 | cbvexv1 2342 | . 2 ⊢ (∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) |
| 12 | 1, 11 | bitri 275 | 1 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 {cab 2709 ∪ cuni 4859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-uni 4860 |
| This theorem is referenced by: elunirab 4874 inuni 5288 elfv 6820 unielxp 7959 frrlem8 8223 frrlem10 8225 tfrlem9 8304 dfac5lem2 10015 fin23lem30 10233 unisngl 23443 metrest 24440 aannenlem2 26265 fpwrelmapffslem 32713 dfiota3 35963 mptsnunlem 37378 nnoeomeqom 43351 |
| Copyright terms: Public domain | W3C validator |