| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluniab | Structured version Visualization version GIF version | ||
| Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| eluniab | ⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 4886 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑦 | |
| 3 | nfsab1 2721 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
| 4 | 2, 3 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 5 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦(𝐴 ∈ 𝑥 ∧ 𝜑) | |
| 6 | eleq2w 2818 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥)) | |
| 7 | eleq1w 2817 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) | |
| 8 | abid 2717 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 9 | 7, 8 | bitrdi 287 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) |
| 10 | 6, 9 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝑥 ∧ 𝜑))) |
| 11 | 4, 5, 10 | cbvexv1 2343 | . 2 ⊢ (∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) |
| 12 | 1, 11 | bitri 275 | 1 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 {cab 2713 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-uni 4884 |
| This theorem is referenced by: elunirab 4898 dfiun2gOLD 5007 inuni 5320 elfv 6873 unielxp 8024 frrlem8 8290 frrlem10 8292 wfrlem12OLD 8332 tfrlem9 8397 dfac5lem2 10136 fin23lem30 10354 unisngl 23463 metrest 24461 aannenlem2 26287 fpwrelmapffslem 32655 dfiota3 35887 mptsnunlem 37302 nnoeomeqom 43283 |
| Copyright terms: Public domain | W3C validator |