| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluniab | Structured version Visualization version GIF version | ||
| Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| eluniab | ⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 4874 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑦 | |
| 3 | nfsab1 2715 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
| 4 | 2, 3 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 5 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦(𝐴 ∈ 𝑥 ∧ 𝜑) | |
| 6 | eleq2w 2812 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥)) | |
| 7 | eleq1w 2811 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) | |
| 8 | abid 2711 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 9 | 7, 8 | bitrdi 287 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) |
| 10 | 6, 9 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝑥 ∧ 𝜑))) |
| 11 | 4, 5, 10 | cbvexv1 2340 | . 2 ⊢ (∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) |
| 12 | 1, 11 | bitri 275 | 1 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 {cab 2707 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-uni 4872 |
| This theorem is referenced by: elunirab 4886 dfiun2gOLD 4995 inuni 5305 elfv 6856 unielxp 8006 frrlem8 8272 frrlem10 8274 tfrlem9 8353 dfac5lem2 10077 fin23lem30 10295 unisngl 23414 metrest 24412 aannenlem2 26237 fpwrelmapffslem 32655 dfiota3 35911 mptsnunlem 37326 nnoeomeqom 43301 |
| Copyright terms: Public domain | W3C validator |