Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluniab | Structured version Visualization version GIF version |
Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
eluniab | ⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4842 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
2 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑦 | |
3 | nfsab1 2723 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
4 | 2, 3 | nfan 1902 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
5 | nfv 1917 | . . 3 ⊢ Ⅎ𝑦(𝐴 ∈ 𝑥 ∧ 𝜑) | |
6 | eleq2w 2822 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥)) | |
7 | eleq1w 2821 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) | |
8 | abid 2719 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
9 | 7, 8 | bitrdi 287 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) |
10 | 6, 9 | anbi12d 631 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝑥 ∧ 𝜑))) |
11 | 4, 5, 10 | cbvexv1 2339 | . 2 ⊢ (∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) |
12 | 1, 11 | bitri 274 | 1 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 {cab 2715 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-uni 4840 |
This theorem is referenced by: elunirab 4855 dfiun2gOLD 4961 inuni 5267 elfv 6772 unielxp 7869 frrlem8 8109 frrlem10 8111 wfrlem12OLD 8151 tfrlem9 8216 dfac5lem2 9880 fin23lem30 10098 unisngl 22678 metrest 23680 aannenlem2 25489 fpwrelmapffslem 31067 dfiota3 34225 mptsnunlem 35509 |
Copyright terms: Public domain | W3C validator |