MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluniab Structured version   Visualization version   GIF version

Theorem eluniab 4762
Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
eluniab (𝐴 {𝑥𝜑} ↔ ∃𝑥(𝐴𝑥𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eluniab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluni 4754 . 2 (𝐴 {𝑥𝜑} ↔ ∃𝑦(𝐴𝑦𝑦 ∈ {𝑥𝜑}))
2 nfv 1896 . . . 4 𝑥 𝐴𝑦
3 nfsab1 2786 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
42, 3nfan 1885 . . 3 𝑥(𝐴𝑦𝑦 ∈ {𝑥𝜑})
5 nfv 1896 . . 3 𝑦(𝐴𝑥𝜑)
6 eleq2w 2868 . . . 4 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
7 eleq1w 2867 . . . . 5 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑥𝜑}))
8 abid 2781 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
97, 8syl6bb 288 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝜑))
106, 9anbi12d 630 . . 3 (𝑦 = 𝑥 → ((𝐴𝑦𝑦 ∈ {𝑥𝜑}) ↔ (𝐴𝑥𝜑)))
114, 5, 10cbvexv1 2323 . 2 (∃𝑦(𝐴𝑦𝑦 ∈ {𝑥𝜑}) ↔ ∃𝑥(𝐴𝑥𝜑))
121, 11bitri 276 1 (𝐴 {𝑥𝜑} ↔ ∃𝑥(𝐴𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396  wex 1765  wcel 2083  {cab 2777   cuni 4751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-ext 2771
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-v 3442  df-uni 4752
This theorem is referenced by:  elunirab  4763  dfiun2g  4864  dfiun2gOLD  4865  inuni  5144  elfv  6543  unielxp  7590  wfrlem12  7825  tfrlem9  7880  dfac5lem2  9403  fin23lem30  9617  unisngl  21823  metrest  22821  aannenlem2  24605  fpwrelmapffslem  30152  frrlem8  32741  frrlem10  32743  dfiota3  32995  mptsnunlem  34171
  Copyright terms: Public domain W3C validator