Step | Hyp | Ref
| Expression |
1 | | df-iun 4926 |
. 2
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} |
2 | | elisset 2820 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝐶 → ∃𝑧 𝑧 = 𝐵) |
3 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝐵 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝐵)) |
4 | 3 | pm5.32ri 576 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵) ↔ (𝑤 ∈ 𝐵 ∧ 𝑧 = 𝐵)) |
5 | 4 | simplbi2 501 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝐵 → (𝑧 = 𝐵 → (𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵))) |
6 | 5 | eximdv 1920 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝐵 → (∃𝑧 𝑧 = 𝐵 → ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵))) |
7 | 2, 6 | syl5com 31 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝐶 → (𝑤 ∈ 𝐵 → ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵))) |
8 | 7 | ralimi 3087 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐶 → ∀𝑥 ∈ 𝐴 (𝑤 ∈ 𝐵 → ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵))) |
9 | | rexim 3172 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (𝑤 ∈ 𝐵 → ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵)) → (∃𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵))) |
10 | 8, 9 | syl 17 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐶 → (∃𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵))) |
11 | | rexcom4 3233 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐴 ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵) ↔ ∃𝑧∃𝑥 ∈ 𝐴 (𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵)) |
12 | | r19.42v 3279 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 (𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵) ↔ (𝑤 ∈ 𝑧 ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
13 | 12 | exbii 1850 |
. . . . . . 7
⊢
(∃𝑧∃𝑥 ∈ 𝐴 (𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵) ↔ ∃𝑧(𝑤 ∈ 𝑧 ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
14 | 11, 13 | bitri 274 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵) ↔ ∃𝑧(𝑤 ∈ 𝑧 ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
15 | 10, 14 | syl6ib 250 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐶 → (∃𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 → ∃𝑧(𝑤 ∈ 𝑧 ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵))) |
16 | 3 | biimpac 479 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵) → 𝑤 ∈ 𝐵) |
17 | 16 | reximi 3178 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐴 (𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵) → ∃𝑥 ∈ 𝐴 𝑤 ∈ 𝐵) |
18 | 12, 17 | sylbir 234 |
. . . . . 6
⊢ ((𝑤 ∈ 𝑧 ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) → ∃𝑥 ∈ 𝐴 𝑤 ∈ 𝐵) |
19 | 18 | exlimiv 1933 |
. . . . 5
⊢
(∃𝑧(𝑤 ∈ 𝑧 ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) → ∃𝑥 ∈ 𝐴 𝑤 ∈ 𝐵) |
20 | 15, 19 | impbid1 224 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐶 → (∃𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 ↔ ∃𝑧(𝑤 ∈ 𝑧 ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵))) |
21 | | vex 3436 |
. . . . 5
⊢ 𝑤 ∈ V |
22 | | eleq1w 2821 |
. . . . . 6
⊢ (𝑧 = 𝑤 → (𝑧 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵)) |
23 | 22 | rexbidv 3226 |
. . . . 5
⊢ (𝑧 = 𝑤 → (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑤 ∈ 𝐵)) |
24 | 21, 23 | elab 3609 |
. . . 4
⊢ (𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑤 ∈ 𝐵) |
25 | | eluni 4842 |
. . . . 5
⊢ (𝑤 ∈ ∪ {𝑦
∣ ∃𝑥 ∈
𝐴 𝑦 = 𝐵} ↔ ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵})) |
26 | | vex 3436 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
27 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝑦 = 𝐵 ↔ 𝑧 = 𝐵)) |
28 | 27 | rexbidv 3226 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
29 | 26, 28 | elab 3609 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
30 | 29 | anbi2i 623 |
. . . . . 6
⊢ ((𝑤 ∈ 𝑧 ∧ 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) ↔ (𝑤 ∈ 𝑧 ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
31 | 30 | exbii 1850 |
. . . . 5
⊢
(∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) ↔ ∃𝑧(𝑤 ∈ 𝑧 ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
32 | 25, 31 | bitri 274 |
. . . 4
⊢ (𝑤 ∈ ∪ {𝑦
∣ ∃𝑥 ∈
𝐴 𝑦 = 𝐵} ↔ ∃𝑧(𝑤 ∈ 𝑧 ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
33 | 20, 24, 32 | 3bitr4g 314 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐶 → (𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} ↔ 𝑤 ∈ ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵})) |
34 | 33 | eqrdv 2736 |
. 2
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐶 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
35 | 1, 34 | eqtrid 2790 |
1
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐶 → ∪
𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |