MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiun2g Structured version   Visualization version   GIF version

Theorem dfiun2g 4960
Description: Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by Rohan Ridenour, 11-Aug-2023.) Avoid ax-10 2137, ax-12 2171. (Revised by SN, 11-Dec-2024.)
Assertion
Ref Expression
dfiun2g (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem dfiun2g
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iun 4926 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 elisset 2820 . . . . . . . . 9 (𝐵𝐶 → ∃𝑧 𝑧 = 𝐵)
3 eleq2 2827 . . . . . . . . . . . 12 (𝑧 = 𝐵 → (𝑤𝑧𝑤𝐵))
43pm5.32ri 576 . . . . . . . . . . 11 ((𝑤𝑧𝑧 = 𝐵) ↔ (𝑤𝐵𝑧 = 𝐵))
54simplbi2 501 . . . . . . . . . 10 (𝑤𝐵 → (𝑧 = 𝐵 → (𝑤𝑧𝑧 = 𝐵)))
65eximdv 1920 . . . . . . . . 9 (𝑤𝐵 → (∃𝑧 𝑧 = 𝐵 → ∃𝑧(𝑤𝑧𝑧 = 𝐵)))
72, 6syl5com 31 . . . . . . . 8 (𝐵𝐶 → (𝑤𝐵 → ∃𝑧(𝑤𝑧𝑧 = 𝐵)))
87ralimi 3087 . . . . . . 7 (∀𝑥𝐴 𝐵𝐶 → ∀𝑥𝐴 (𝑤𝐵 → ∃𝑧(𝑤𝑧𝑧 = 𝐵)))
9 rexim 3172 . . . . . . 7 (∀𝑥𝐴 (𝑤𝐵 → ∃𝑧(𝑤𝑧𝑧 = 𝐵)) → (∃𝑥𝐴 𝑤𝐵 → ∃𝑥𝐴𝑧(𝑤𝑧𝑧 = 𝐵)))
108, 9syl 17 . . . . . 6 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑤𝐵 → ∃𝑥𝐴𝑧(𝑤𝑧𝑧 = 𝐵)))
11 rexcom4 3233 . . . . . . 7 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = 𝐵) ↔ ∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = 𝐵))
12 r19.42v 3279 . . . . . . . 8 (∃𝑥𝐴 (𝑤𝑧𝑧 = 𝐵) ↔ (𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
1312exbii 1850 . . . . . . 7 (∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = 𝐵) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
1411, 13bitri 274 . . . . . 6 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = 𝐵) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
1510, 14syl6ib 250 . . . . 5 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑤𝐵 → ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵)))
163biimpac 479 . . . . . . . 8 ((𝑤𝑧𝑧 = 𝐵) → 𝑤𝐵)
1716reximi 3178 . . . . . . 7 (∃𝑥𝐴 (𝑤𝑧𝑧 = 𝐵) → ∃𝑥𝐴 𝑤𝐵)
1812, 17sylbir 234 . . . . . 6 ((𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → ∃𝑥𝐴 𝑤𝐵)
1918exlimiv 1933 . . . . 5 (∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → ∃𝑥𝐴 𝑤𝐵)
2015, 19impbid1 224 . . . 4 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑤𝐵 ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵)))
21 vex 3436 . . . . 5 𝑤 ∈ V
22 eleq1w 2821 . . . . . 6 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
2322rexbidv 3226 . . . . 5 (𝑧 = 𝑤 → (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑥𝐴 𝑤𝐵))
2421, 23elab 3609 . . . 4 (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} ↔ ∃𝑥𝐴 𝑤𝐵)
25 eluni 4842 . . . . 5 (𝑤 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑧(𝑤𝑧𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
26 vex 3436 . . . . . . . 8 𝑧 ∈ V
27 eqeq1 2742 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦 = 𝐵𝑧 = 𝐵))
2827rexbidv 3226 . . . . . . . 8 (𝑦 = 𝑧 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥𝐴 𝑧 = 𝐵))
2926, 28elab 3609 . . . . . . 7 (𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑥𝐴 𝑧 = 𝐵)
3029anbi2i 623 . . . . . 6 ((𝑤𝑧𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) ↔ (𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
3130exbii 1850 . . . . 5 (∃𝑧(𝑤𝑧𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
3225, 31bitri 274 . . . 4 (𝑤 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
3320, 24, 323bitr4g 314 . . 3 (∀𝑥𝐴 𝐵𝐶 → (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} ↔ 𝑤 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
3433eqrdv 2736 . 2 (∀𝑥𝐴 𝐵𝐶 → {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
351, 34eqtrid 2790 1 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wral 3064  wrex 3065   cuni 4839   ciun 4924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-uni 4840  df-iun 4926
This theorem is referenced by:  dfiun2  4963  dfiun3g  5873  abnexg  7606  iunexg  7806  uniqs  8566  ac6num  10235  iunopn  22047  pnrmopn  22494  cncmp  22543  ptcmplem3  23205  iunmbl  24717  voliun  24718  sigaclcuni  32086  sigaclcu2  32088  sigaclci  32100  measvunilem  32180  meascnbl  32187  carsgclctunlem3  32287  uniqsALTV  36464
  Copyright terms: Public domain W3C validator