Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfiun2g | Structured version Visualization version GIF version |
Description: Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
dfiun2g | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 3141 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 | |
2 | rspa 3129 | . . . . . . 7 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
3 | clel3g 3582 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐶 → (𝑧 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦))) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) → (𝑧 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦))) |
5 | 1, 4 | rexbida 3245 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦(𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦))) |
6 | rexcom4 3178 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦(𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑦∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦)) | |
7 | 5, 6 | bitrdi 290 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦))) |
8 | r19.41v 3273 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦)) | |
9 | 8 | exbii 1855 | . . . . 5 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑦(∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦)) |
10 | exancom 1869 | . . . . 5 ⊢ (∃𝑦(∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) | |
11 | 9, 10 | bitri 278 | . . . 4 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) |
12 | 7, 11 | bitrdi 290 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵))) |
13 | eliun 4923 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) | |
14 | eluniab 4849 | . . 3 ⊢ (𝑧 ∈ ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) | |
15 | 12, 13, 14 | 3bitr4g 317 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑧 ∈ ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵})) |
16 | 15 | eqrdv 2736 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∃wex 1787 ∈ wcel 2111 {cab 2715 ∀wral 3062 ∃wrex 3063 ∪ cuni 4834 ∪ ciun 4919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-nf 1792 df-sb 2072 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3067 df-rex 3068 df-v 3423 df-uni 4835 df-iun 4921 |
This theorem is referenced by: dfiun2 4957 dfiun3g 5848 abnexg 7560 iunexg 7755 uniqs 8480 ac6num 10118 iunopn 21822 pnrmopn 22267 cncmp 22316 ptcmplem3 22978 iunmbl 24477 voliun 24478 sigaclcuni 31825 sigaclcu2 31827 sigaclci 31839 measvunilem 31919 meascnbl 31926 carsgclctunlem3 32026 uniqsALTV 36231 |
Copyright terms: Public domain | W3C validator |