![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfiun2g | Structured version Visualization version GIF version |
Description: Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
dfiun2g | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 3169 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 | |
2 | rspa 3156 | . . . . . . 7 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
3 | clel3g 3568 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐶 → (𝑧 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦))) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) → (𝑧 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦))) |
5 | 1, 4 | rexbida 3261 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦(𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦))) |
6 | rexcom4 3196 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦(𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑦∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦)) | |
7 | 5, 6 | syl6bb 279 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦))) |
8 | r19.41v 3288 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦)) | |
9 | 8 | exbii 1810 | . . . . 5 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑦(∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦)) |
10 | exancom 1822 | . . . . 5 ⊢ (∃𝑦(∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) | |
11 | 9, 10 | bitri 267 | . . . 4 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) |
12 | 7, 11 | syl6bb 279 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵))) |
13 | eliun 4797 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) | |
14 | eluniab 4724 | . . 3 ⊢ (𝑧 ∈ ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) | |
15 | 12, 13, 14 | 3bitr4g 306 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑧 ∈ ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵})) |
16 | 15 | eqrdv 2776 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∃wex 1742 ∈ wcel 2050 {cab 2758 ∀wral 3088 ∃wrex 3089 ∪ cuni 4713 ∪ ciun 4793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-v 3417 df-uni 4714 df-iun 4795 |
This theorem is referenced by: dfiun2 4829 dfiun3g 5678 abnexg 7297 iunexg 7478 uniqs 8159 ac6num 9701 iunopn 21213 pnrmopn 21658 cncmp 21707 ptcmplem3 22369 iunmbl 23860 voliun 23861 sigaclcuni 31022 sigaclcu2 31024 sigaclci 31036 measvunilem 31116 meascnbl 31123 carsgclctunlem3 31223 uniqsALTV 35031 |
Copyright terms: Public domain | W3C validator |