MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiun2g Structured version   Visualization version   GIF version

Theorem dfiun2g 4826
Description: Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by Rohan Ridenour, 11-Aug-2023.)
Assertion
Ref Expression
dfiun2g (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem dfiun2g
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfra1 3169 . . . . . 6 𝑥𝑥𝐴 𝐵𝐶
2 rspa 3156 . . . . . . 7 ((∀𝑥𝐴 𝐵𝐶𝑥𝐴) → 𝐵𝐶)
3 clel3g 3568 . . . . . . 7 (𝐵𝐶 → (𝑧𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑧𝑦)))
42, 3syl 17 . . . . . 6 ((∀𝑥𝐴 𝐵𝐶𝑥𝐴) → (𝑧𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑧𝑦)))
51, 4rexbida 3261 . . . . 5 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑥𝐴𝑦(𝑦 = 𝐵𝑧𝑦)))
6 rexcom4 3196 . . . . 5 (∃𝑥𝐴𝑦(𝑦 = 𝐵𝑧𝑦) ↔ ∃𝑦𝑥𝐴 (𝑦 = 𝐵𝑧𝑦))
75, 6syl6bb 279 . . . 4 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑦𝑥𝐴 (𝑦 = 𝐵𝑧𝑦)))
8 r19.41v 3288 . . . . . 6 (∃𝑥𝐴 (𝑦 = 𝐵𝑧𝑦) ↔ (∃𝑥𝐴 𝑦 = 𝐵𝑧𝑦))
98exbii 1810 . . . . 5 (∃𝑦𝑥𝐴 (𝑦 = 𝐵𝑧𝑦) ↔ ∃𝑦(∃𝑥𝐴 𝑦 = 𝐵𝑧𝑦))
10 exancom 1822 . . . . 5 (∃𝑦(∃𝑥𝐴 𝑦 = 𝐵𝑧𝑦) ↔ ∃𝑦(𝑧𝑦 ∧ ∃𝑥𝐴 𝑦 = 𝐵))
119, 10bitri 267 . . . 4 (∃𝑦𝑥𝐴 (𝑦 = 𝐵𝑧𝑦) ↔ ∃𝑦(𝑧𝑦 ∧ ∃𝑥𝐴 𝑦 = 𝐵))
127, 11syl6bb 279 . . 3 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑦(𝑧𝑦 ∧ ∃𝑥𝐴 𝑦 = 𝐵)))
13 eliun 4797 . . 3 (𝑧 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑧𝐵)
14 eluniab 4724 . . 3 (𝑧 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑦(𝑧𝑦 ∧ ∃𝑥𝐴 𝑦 = 𝐵))
1512, 13, 143bitr4g 306 . 2 (∀𝑥𝐴 𝐵𝐶 → (𝑧 𝑥𝐴 𝐵𝑧 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
1615eqrdv 2776 1 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wex 1742  wcel 2050  {cab 2758  wral 3088  wrex 3089   cuni 4713   ciun 4793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2750
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-v 3417  df-uni 4714  df-iun 4795
This theorem is referenced by:  dfiun2  4829  dfiun3g  5678  abnexg  7297  iunexg  7478  uniqs  8159  ac6num  9701  iunopn  21213  pnrmopn  21658  cncmp  21707  ptcmplem3  22369  iunmbl  23860  voliun  23861  sigaclcuni  31022  sigaclcu2  31024  sigaclci  31036  measvunilem  31116  meascnbl  31123  carsgclctunlem3  31223  uniqsALTV  35031
  Copyright terms: Public domain W3C validator