MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiun2g Structured version   Visualization version   GIF version

Theorem dfiun2g 4994
Description: Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by Rohan Ridenour, 11-Aug-2023.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 11-Dec-2024.)
Assertion
Ref Expression
dfiun2g (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem dfiun2g
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iun 4957 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 elisset 2810 . . . . . . . . 9 (𝐵𝐶 → ∃𝑧 𝑧 = 𝐵)
3 eleq2 2817 . . . . . . . . . . . 12 (𝑧 = 𝐵 → (𝑤𝑧𝑤𝐵))
43pm5.32ri 575 . . . . . . . . . . 11 ((𝑤𝑧𝑧 = 𝐵) ↔ (𝑤𝐵𝑧 = 𝐵))
54simplbi2 500 . . . . . . . . . 10 (𝑤𝐵 → (𝑧 = 𝐵 → (𝑤𝑧𝑧 = 𝐵)))
65eximdv 1917 . . . . . . . . 9 (𝑤𝐵 → (∃𝑧 𝑧 = 𝐵 → ∃𝑧(𝑤𝑧𝑧 = 𝐵)))
72, 6syl5com 31 . . . . . . . 8 (𝐵𝐶 → (𝑤𝐵 → ∃𝑧(𝑤𝑧𝑧 = 𝐵)))
87ralimi 3066 . . . . . . 7 (∀𝑥𝐴 𝐵𝐶 → ∀𝑥𝐴 (𝑤𝐵 → ∃𝑧(𝑤𝑧𝑧 = 𝐵)))
9 rexim 3070 . . . . . . 7 (∀𝑥𝐴 (𝑤𝐵 → ∃𝑧(𝑤𝑧𝑧 = 𝐵)) → (∃𝑥𝐴 𝑤𝐵 → ∃𝑥𝐴𝑧(𝑤𝑧𝑧 = 𝐵)))
108, 9syl 17 . . . . . 6 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑤𝐵 → ∃𝑥𝐴𝑧(𝑤𝑧𝑧 = 𝐵)))
11 rexcom4 3264 . . . . . . 7 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = 𝐵) ↔ ∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = 𝐵))
12 r19.42v 3169 . . . . . . . 8 (∃𝑥𝐴 (𝑤𝑧𝑧 = 𝐵) ↔ (𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
1312exbii 1848 . . . . . . 7 (∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = 𝐵) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
1411, 13bitri 275 . . . . . 6 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = 𝐵) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
1510, 14imbitrdi 251 . . . . 5 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑤𝐵 → ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵)))
163biimpac 478 . . . . . . . 8 ((𝑤𝑧𝑧 = 𝐵) → 𝑤𝐵)
1716reximi 3067 . . . . . . 7 (∃𝑥𝐴 (𝑤𝑧𝑧 = 𝐵) → ∃𝑥𝐴 𝑤𝐵)
1812, 17sylbir 235 . . . . . 6 ((𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → ∃𝑥𝐴 𝑤𝐵)
1918exlimiv 1930 . . . . 5 (∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → ∃𝑥𝐴 𝑤𝐵)
2015, 19impbid1 225 . . . 4 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑤𝐵 ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵)))
21 vex 3451 . . . . 5 𝑤 ∈ V
22 eleq1w 2811 . . . . . 6 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
2322rexbidv 3157 . . . . 5 (𝑧 = 𝑤 → (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑥𝐴 𝑤𝐵))
2421, 23elab 3646 . . . 4 (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} ↔ ∃𝑥𝐴 𝑤𝐵)
25 eluni 4874 . . . . 5 (𝑤 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑧(𝑤𝑧𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
26 vex 3451 . . . . . . . 8 𝑧 ∈ V
27 eqeq1 2733 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦 = 𝐵𝑧 = 𝐵))
2827rexbidv 3157 . . . . . . . 8 (𝑦 = 𝑧 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥𝐴 𝑧 = 𝐵))
2926, 28elab 3646 . . . . . . 7 (𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑥𝐴 𝑧 = 𝐵)
3029anbi2i 623 . . . . . 6 ((𝑤𝑧𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) ↔ (𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
3130exbii 1848 . . . . 5 (∃𝑧(𝑤𝑧𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
3225, 31bitri 275 . . . 4 (𝑤 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
3320, 24, 323bitr4g 314 . . 3 (∀𝑥𝐴 𝐵𝐶 → (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} ↔ 𝑤 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
3433eqrdv 2727 . 2 (∀𝑥𝐴 𝐵𝐶 → {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
351, 34eqtrid 2776 1 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053   cuni 4871   ciun 4955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3449  df-uni 4872  df-iun 4957
This theorem is referenced by:  dfiun2  4997  dfiun3g  5931  abnexg  7732  iunexg  7942  uniqs  8747  ac6num  10432  iunopn  22785  pnrmopn  23230  cncmp  23279  ptcmplem3  23941  iunmbl  25454  voliun  25455  sigaclcuni  34108  sigaclcu2  34110  sigaclci  34122  measvunilem  34202  meascnbl  34209  carsgclctunlem3  34311
  Copyright terms: Public domain W3C validator