MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiun2g Structured version   Visualization version   GIF version

Theorem dfiun2g 4997
Description: Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by Rohan Ridenour, 11-Aug-2023.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 11-Dec-2024.)
Assertion
Ref Expression
dfiun2g (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem dfiun2g
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iun 4960 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 elisset 2811 . . . . . . . . 9 (𝐵𝐶 → ∃𝑧 𝑧 = 𝐵)
3 eleq2 2818 . . . . . . . . . . . 12 (𝑧 = 𝐵 → (𝑤𝑧𝑤𝐵))
43pm5.32ri 575 . . . . . . . . . . 11 ((𝑤𝑧𝑧 = 𝐵) ↔ (𝑤𝐵𝑧 = 𝐵))
54simplbi2 500 . . . . . . . . . 10 (𝑤𝐵 → (𝑧 = 𝐵 → (𝑤𝑧𝑧 = 𝐵)))
65eximdv 1917 . . . . . . . . 9 (𝑤𝐵 → (∃𝑧 𝑧 = 𝐵 → ∃𝑧(𝑤𝑧𝑧 = 𝐵)))
72, 6syl5com 31 . . . . . . . 8 (𝐵𝐶 → (𝑤𝐵 → ∃𝑧(𝑤𝑧𝑧 = 𝐵)))
87ralimi 3067 . . . . . . 7 (∀𝑥𝐴 𝐵𝐶 → ∀𝑥𝐴 (𝑤𝐵 → ∃𝑧(𝑤𝑧𝑧 = 𝐵)))
9 rexim 3071 . . . . . . 7 (∀𝑥𝐴 (𝑤𝐵 → ∃𝑧(𝑤𝑧𝑧 = 𝐵)) → (∃𝑥𝐴 𝑤𝐵 → ∃𝑥𝐴𝑧(𝑤𝑧𝑧 = 𝐵)))
108, 9syl 17 . . . . . 6 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑤𝐵 → ∃𝑥𝐴𝑧(𝑤𝑧𝑧 = 𝐵)))
11 rexcom4 3265 . . . . . . 7 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = 𝐵) ↔ ∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = 𝐵))
12 r19.42v 3170 . . . . . . . 8 (∃𝑥𝐴 (𝑤𝑧𝑧 = 𝐵) ↔ (𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
1312exbii 1848 . . . . . . 7 (∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = 𝐵) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
1411, 13bitri 275 . . . . . 6 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = 𝐵) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
1510, 14imbitrdi 251 . . . . 5 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑤𝐵 → ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵)))
163biimpac 478 . . . . . . . 8 ((𝑤𝑧𝑧 = 𝐵) → 𝑤𝐵)
1716reximi 3068 . . . . . . 7 (∃𝑥𝐴 (𝑤𝑧𝑧 = 𝐵) → ∃𝑥𝐴 𝑤𝐵)
1812, 17sylbir 235 . . . . . 6 ((𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → ∃𝑥𝐴 𝑤𝐵)
1918exlimiv 1930 . . . . 5 (∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → ∃𝑥𝐴 𝑤𝐵)
2015, 19impbid1 225 . . . 4 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑤𝐵 ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵)))
21 vex 3454 . . . . 5 𝑤 ∈ V
22 eleq1w 2812 . . . . . 6 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
2322rexbidv 3158 . . . . 5 (𝑧 = 𝑤 → (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑥𝐴 𝑤𝐵))
2421, 23elab 3649 . . . 4 (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} ↔ ∃𝑥𝐴 𝑤𝐵)
25 eluni 4877 . . . . 5 (𝑤 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑧(𝑤𝑧𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
26 vex 3454 . . . . . . . 8 𝑧 ∈ V
27 eqeq1 2734 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦 = 𝐵𝑧 = 𝐵))
2827rexbidv 3158 . . . . . . . 8 (𝑦 = 𝑧 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥𝐴 𝑧 = 𝐵))
2926, 28elab 3649 . . . . . . 7 (𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑥𝐴 𝑧 = 𝐵)
3029anbi2i 623 . . . . . 6 ((𝑤𝑧𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) ↔ (𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
3130exbii 1848 . . . . 5 (∃𝑧(𝑤𝑧𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
3225, 31bitri 275 . . . 4 (𝑤 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
3320, 24, 323bitr4g 314 . . 3 (∀𝑥𝐴 𝐵𝐶 → (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} ↔ 𝑤 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
3433eqrdv 2728 . 2 (∀𝑥𝐴 𝐵𝐶 → {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
351, 34eqtrid 2777 1 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wral 3045  wrex 3054   cuni 4874   ciun 4958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-v 3452  df-uni 4875  df-iun 4960
This theorem is referenced by:  dfiun2  5000  dfiun3g  5934  abnexg  7735  iunexg  7945  uniqs  8750  ac6num  10439  iunopn  22792  pnrmopn  23237  cncmp  23286  ptcmplem3  23948  iunmbl  25461  voliun  25462  sigaclcuni  34115  sigaclcu2  34117  sigaclci  34129  measvunilem  34209  meascnbl  34216  carsgclctunlem3  34318
  Copyright terms: Public domain W3C validator