Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfiun2g | Structured version Visualization version GIF version |
Description: Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
dfiun2g | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 3142 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 | |
2 | rspa 3130 | . . . . . . 7 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
3 | clel3g 3584 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐶 → (𝑧 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦))) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) → (𝑧 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦))) |
5 | 1, 4 | rexbida 3246 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦(𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦))) |
6 | rexcom4 3179 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦(𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑦∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦)) | |
7 | 5, 6 | bitrdi 286 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦))) |
8 | r19.41v 3273 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦)) | |
9 | 8 | exbii 1851 | . . . . 5 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑦(∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦)) |
10 | exancom 1865 | . . . . 5 ⊢ (∃𝑦(∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) | |
11 | 9, 10 | bitri 274 | . . . 4 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) |
12 | 7, 11 | bitrdi 286 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵))) |
13 | eliun 4925 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) | |
14 | eluniab 4851 | . . 3 ⊢ (𝑧 ∈ ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) | |
15 | 12, 13, 14 | 3bitr4g 313 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑧 ∈ ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵})) |
16 | 15 | eqrdv 2736 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 ∪ cuni 4836 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-uni 4837 df-iun 4923 |
This theorem is referenced by: dfiun2 4959 dfiun3g 5862 abnexg 7584 iunexg 7779 uniqs 8524 ac6num 10166 iunopn 21955 pnrmopn 22402 cncmp 22451 ptcmplem3 23113 iunmbl 24622 voliun 24623 sigaclcuni 31986 sigaclcu2 31988 sigaclci 32000 measvunilem 32080 meascnbl 32087 carsgclctunlem3 32187 uniqsALTV 36391 |
Copyright terms: Public domain | W3C validator |