MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nb3grprlem1 Structured version   Visualization version   GIF version

Theorem nb3grprlem1 29325
Description: Lemma 1 for nb3grpr 29327. (Contributed by Alexander van der Vekens, 15-Oct-2017.) (Revised by AV, 28-Oct-2020.)
Hypotheses
Ref Expression
nb3grpr.v 𝑉 = (Vtx‘𝐺)
nb3grpr.e 𝐸 = (Edg‘𝐺)
nb3grpr.g (𝜑𝐺 ∈ USGraph)
nb3grpr.t (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
nb3grpr.s (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
Assertion
Ref Expression
nb3grprlem1 (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)))

Proof of Theorem nb3grprlem1
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nb3grpr.s . . . . . . 7 (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
2 prid1g 4712 . . . . . . . 8 (𝐵𝑌𝐵 ∈ {𝐵, 𝐶})
323ad2ant2 1134 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐵 ∈ {𝐵, 𝐶})
41, 3syl 17 . . . . . 6 (𝜑𝐵 ∈ {𝐵, 𝐶})
54adantr 480 . . . . 5 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐵 ∈ {𝐵, 𝐶})
6 eleq2 2817 . . . . . . 7 ({𝐵, 𝐶} = (𝐺 NeighbVtx 𝐴) → (𝐵 ∈ {𝐵, 𝐶} ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴)))
76eqcoms 2737 . . . . . 6 ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} → (𝐵 ∈ {𝐵, 𝐶} ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴)))
87adantl 481 . . . . 5 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐵 ∈ {𝐵, 𝐶} ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴)))
95, 8mpbid 232 . . . 4 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐵 ∈ (𝐺 NeighbVtx 𝐴))
10 nb3grpr.g . . . . . 6 (𝜑𝐺 ∈ USGraph)
11 nb3grpr.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
1211nbusgreledg 29298 . . . . . . 7 (𝐺 ∈ USGraph → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐵, 𝐴} ∈ 𝐸))
13 prcom 4684 . . . . . . . . 9 {𝐵, 𝐴} = {𝐴, 𝐵}
1413a1i 11 . . . . . . . 8 (𝐺 ∈ USGraph → {𝐵, 𝐴} = {𝐴, 𝐵})
1514eleq1d 2813 . . . . . . 7 (𝐺 ∈ USGraph → ({𝐵, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸))
1612, 15bitrd 279 . . . . . 6 (𝐺 ∈ USGraph → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐵} ∈ 𝐸))
1710, 16syl 17 . . . . 5 (𝜑 → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐵} ∈ 𝐸))
1817adantr 480 . . . 4 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐵} ∈ 𝐸))
199, 18mpbid 232 . . 3 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → {𝐴, 𝐵} ∈ 𝐸)
20 prid2g 4713 . . . . . . . 8 (𝐶𝑍𝐶 ∈ {𝐵, 𝐶})
21203ad2ant3 1135 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 ∈ {𝐵, 𝐶})
221, 21syl 17 . . . . . 6 (𝜑𝐶 ∈ {𝐵, 𝐶})
2322adantr 480 . . . . 5 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐶 ∈ {𝐵, 𝐶})
24 eleq2 2817 . . . . . . 7 ({𝐵, 𝐶} = (𝐺 NeighbVtx 𝐴) → (𝐶 ∈ {𝐵, 𝐶} ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
2524eqcoms 2737 . . . . . 6 ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} → (𝐶 ∈ {𝐵, 𝐶} ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
2625adantl 481 . . . . 5 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐶 ∈ {𝐵, 𝐶} ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
2723, 26mpbid 232 . . . 4 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐶 ∈ (𝐺 NeighbVtx 𝐴))
2811nbusgreledg 29298 . . . . . . 7 (𝐺 ∈ USGraph → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐶, 𝐴} ∈ 𝐸))
29 prcom 4684 . . . . . . . . 9 {𝐶, 𝐴} = {𝐴, 𝐶}
3029a1i 11 . . . . . . . 8 (𝐺 ∈ USGraph → {𝐶, 𝐴} = {𝐴, 𝐶})
3130eleq1d 2813 . . . . . . 7 (𝐺 ∈ USGraph → ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸))
3228, 31bitrd 279 . . . . . 6 (𝐺 ∈ USGraph → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐶} ∈ 𝐸))
3310, 32syl 17 . . . . 5 (𝜑 → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐶} ∈ 𝐸))
3433adantr 480 . . . 4 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐶} ∈ 𝐸))
3527, 34mpbid 232 . . 3 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → {𝐴, 𝐶} ∈ 𝐸)
3619, 35jca 511 . 2 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))
37 nb3grpr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
3837, 11nbusgr 29294 . . . . 5 (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐴) = {𝑣𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸})
3910, 38syl 17 . . . 4 (𝜑 → (𝐺 NeighbVtx 𝐴) = {𝑣𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸})
4039adantr 480 . . 3 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝐺 NeighbVtx 𝐴) = {𝑣𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸})
41 nb3grpr.t . . . . . . . . . 10 (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
42 eleq2 2817 . . . . . . . . . 10 (𝑉 = {𝐴, 𝐵, 𝐶} → (𝑣𝑉𝑣 ∈ {𝐴, 𝐵, 𝐶}))
4341, 42syl 17 . . . . . . . . 9 (𝜑 → (𝑣𝑉𝑣 ∈ {𝐴, 𝐵, 𝐶}))
4443adantr 480 . . . . . . . 8 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣𝑉𝑣 ∈ {𝐴, 𝐵, 𝐶}))
45 vex 3440 . . . . . . . . . . 11 𝑣 ∈ V
4645eltp 4641 . . . . . . . . . 10 (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑣 = 𝐴𝑣 = 𝐵𝑣 = 𝐶))
4711usgredgne 29151 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ {𝐴, 𝑣} ∈ 𝐸) → 𝐴𝑣)
48 df-ne 2926 . . . . . . . . . . . . . . . . 17 (𝐴𝑣 ↔ ¬ 𝐴 = 𝑣)
49 pm2.24 124 . . . . . . . . . . . . . . . . . . 19 (𝐴 = 𝑣 → (¬ 𝐴 = 𝑣 → (𝑣 = 𝐵𝑣 = 𝐶)))
5049eqcoms 2737 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐴 → (¬ 𝐴 = 𝑣 → (𝑣 = 𝐵𝑣 = 𝐶)))
5150com12 32 . . . . . . . . . . . . . . . . 17 𝐴 = 𝑣 → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶)))
5248, 51sylbi 217 . . . . . . . . . . . . . . . 16 (𝐴𝑣 → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶)))
5347, 52syl 17 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ {𝐴, 𝑣} ∈ 𝐸) → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶)))
5453ex 412 . . . . . . . . . . . . . 14 (𝐺 ∈ USGraph → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶))))
5510, 54syl 17 . . . . . . . . . . . . 13 (𝜑 → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶))))
5655adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶))))
5756com3r 87 . . . . . . . . . . 11 (𝑣 = 𝐴 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
58 orc 867 . . . . . . . . . . . 12 (𝑣 = 𝐵 → (𝑣 = 𝐵𝑣 = 𝐶))
59582a1d 26 . . . . . . . . . . 11 (𝑣 = 𝐵 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
60 olc 868 . . . . . . . . . . . 12 (𝑣 = 𝐶 → (𝑣 = 𝐵𝑣 = 𝐶))
61602a1d 26 . . . . . . . . . . 11 (𝑣 = 𝐶 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
6257, 59, 613jaoi 1430 . . . . . . . . . 10 ((𝑣 = 𝐴𝑣 = 𝐵𝑣 = 𝐶) → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
6346, 62sylbi 217 . . . . . . . . 9 (𝑣 ∈ {𝐴, 𝐵, 𝐶} → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
6463com12 32 . . . . . . . 8 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 ∈ {𝐴, 𝐵, 𝐶} → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
6544, 64sylbid 240 . . . . . . 7 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣𝑉 → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
6665impd 410 . . . . . 6 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ((𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸) → (𝑣 = 𝐵𝑣 = 𝐶)))
67 eqid 2729 . . . . . . . . . . . . . . . . . 18 𝐵 = 𝐵
68673mix2i 1335 . . . . . . . . . . . . . . . . 17 (𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶)
691simp2d 1143 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵𝑌)
70 eltpg 4638 . . . . . . . . . . . . . . . . . 18 (𝐵𝑌 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶)))
7169, 70syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶)))
7268, 71mpbiri 258 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ {𝐴, 𝐵, 𝐶})
7372adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑣 = 𝐵) → 𝐵 ∈ {𝐴, 𝐵, 𝐶})
74 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝐵 → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐵 ∈ {𝐴, 𝐵, 𝐶}))
7574bicomd 223 . . . . . . . . . . . . . . . 16 (𝑣 = 𝐵 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶}))
7675adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑣 = 𝐵) → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶}))
7773, 76mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝑣 = 𝐵) → 𝑣 ∈ {𝐴, 𝐵, 𝐶})
7842bicomd 223 . . . . . . . . . . . . . . . 16 (𝑉 = {𝐴, 𝐵, 𝐶} → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣𝑉))
7941, 78syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣𝑉))
8079adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑣 = 𝐵) → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣𝑉))
8177, 80mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑣 = 𝐵) → 𝑣𝑉)
8281ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑣 = 𝐵𝑣𝑉))
8382adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐵𝑣𝑉))
8483impcom 407 . . . . . . . . . 10 ((𝑣 = 𝐵 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → 𝑣𝑉)
85 preq2 4686 . . . . . . . . . . . . . . 15 (𝐵 = 𝑣 → {𝐴, 𝐵} = {𝐴, 𝑣})
8685eleq1d 2813 . . . . . . . . . . . . . 14 (𝐵 = 𝑣 → ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸))
8786eqcoms 2737 . . . . . . . . . . . . 13 (𝑣 = 𝐵 → ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸))
8887biimpcd 249 . . . . . . . . . . . 12 ({𝐴, 𝐵} ∈ 𝐸 → (𝑣 = 𝐵 → {𝐴, 𝑣} ∈ 𝐸))
8988ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐵 → {𝐴, 𝑣} ∈ 𝐸))
9089impcom 407 . . . . . . . . . 10 ((𝑣 = 𝐵 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → {𝐴, 𝑣} ∈ 𝐸)
9184, 90jca 511 . . . . . . . . 9 ((𝑣 = 𝐵 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸))
9291ex 412 . . . . . . . 8 (𝑣 = 𝐵 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)))
93 tpid3g 4724 . . . . . . . . . . . . . . . . . 18 (𝐶𝑍𝐶 ∈ {𝐴, 𝐵, 𝐶})
94933ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
951, 94syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ {𝐴, 𝐵, 𝐶})
9695adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑣 = 𝐶) → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
97 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝐶 → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
9897bicomd 223 . . . . . . . . . . . . . . . 16 (𝑣 = 𝐶 → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶}))
9998adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑣 = 𝐶) → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶}))
10096, 99mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝑣 = 𝐶) → 𝑣 ∈ {𝐴, 𝐵, 𝐶})
10179adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑣 = 𝐶) → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣𝑉))
102100, 101mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑣 = 𝐶) → 𝑣𝑉)
103102ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑣 = 𝐶𝑣𝑉))
104103adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐶𝑣𝑉))
105104impcom 407 . . . . . . . . . 10 ((𝑣 = 𝐶 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → 𝑣𝑉)
106 preq2 4686 . . . . . . . . . . . . . . 15 (𝐶 = 𝑣 → {𝐴, 𝐶} = {𝐴, 𝑣})
107106eleq1d 2813 . . . . . . . . . . . . . 14 (𝐶 = 𝑣 → ({𝐴, 𝐶} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸))
108107eqcoms 2737 . . . . . . . . . . . . 13 (𝑣 = 𝐶 → ({𝐴, 𝐶} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸))
109108biimpcd 249 . . . . . . . . . . . 12 ({𝐴, 𝐶} ∈ 𝐸 → (𝑣 = 𝐶 → {𝐴, 𝑣} ∈ 𝐸))
110109ad2antll 729 . . . . . . . . . . 11 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐶 → {𝐴, 𝑣} ∈ 𝐸))
111110impcom 407 . . . . . . . . . 10 ((𝑣 = 𝐶 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → {𝐴, 𝑣} ∈ 𝐸)
112105, 111jca 511 . . . . . . . . 9 ((𝑣 = 𝐶 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸))
113112ex 412 . . . . . . . 8 (𝑣 = 𝐶 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)))
11492, 113jaoi 857 . . . . . . 7 ((𝑣 = 𝐵𝑣 = 𝐶) → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)))
115114com12 32 . . . . . 6 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ((𝑣 = 𝐵𝑣 = 𝐶) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)))
11666, 115impbid 212 . . . . 5 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ((𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸) ↔ (𝑣 = 𝐵𝑣 = 𝐶)))
117116abbidv 2795 . . . 4 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → {𝑣 ∣ (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)} = {𝑣 ∣ (𝑣 = 𝐵𝑣 = 𝐶)})
118 df-rab 3395 . . . 4 {𝑣𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸} = {𝑣 ∣ (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)}
119 dfpr2 4598 . . . 4 {𝐵, 𝐶} = {𝑣 ∣ (𝑣 = 𝐵𝑣 = 𝐶)}
120117, 118, 1193eqtr4g 2789 . . 3 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → {𝑣𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸} = {𝐵, 𝐶})
12140, 120eqtrd 2764 . 2 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶})
12236, 121impbida 800 1 (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  {crab 3394  {cpr 4579  {ctp 4581  cfv 6482  (class class class)co 7349  Vtxcvtx 28941  Edgcedg 28992  USGraphcusgr 29094   NeighbVtx cnbgr 29277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238  df-edg 28993  df-upgr 29027  df-umgr 29028  df-usgr 29096  df-nbgr 29278
This theorem is referenced by:  nb3grpr  29327  nb3grpr2  29328  nb3gr2nb  29329
  Copyright terms: Public domain W3C validator