MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nb3grprlem1 Structured version   Visualization version   GIF version

Theorem nb3grprlem1 29307
Description: Lemma 1 for nb3grpr 29309. (Contributed by Alexander van der Vekens, 15-Oct-2017.) (Revised by AV, 28-Oct-2020.)
Hypotheses
Ref Expression
nb3grpr.v 𝑉 = (Vtx‘𝐺)
nb3grpr.e 𝐸 = (Edg‘𝐺)
nb3grpr.g (𝜑𝐺 ∈ USGraph)
nb3grpr.t (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
nb3grpr.s (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
Assertion
Ref Expression
nb3grprlem1 (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)))

Proof of Theorem nb3grprlem1
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nb3grpr.s . . . . . . 7 (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
2 prid1g 4724 . . . . . . . 8 (𝐵𝑌𝐵 ∈ {𝐵, 𝐶})
323ad2ant2 1134 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐵 ∈ {𝐵, 𝐶})
41, 3syl 17 . . . . . 6 (𝜑𝐵 ∈ {𝐵, 𝐶})
54adantr 480 . . . . 5 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐵 ∈ {𝐵, 𝐶})
6 eleq2 2817 . . . . . . 7 ({𝐵, 𝐶} = (𝐺 NeighbVtx 𝐴) → (𝐵 ∈ {𝐵, 𝐶} ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴)))
76eqcoms 2737 . . . . . 6 ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} → (𝐵 ∈ {𝐵, 𝐶} ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴)))
87adantl 481 . . . . 5 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐵 ∈ {𝐵, 𝐶} ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴)))
95, 8mpbid 232 . . . 4 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐵 ∈ (𝐺 NeighbVtx 𝐴))
10 nb3grpr.g . . . . . 6 (𝜑𝐺 ∈ USGraph)
11 nb3grpr.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
1211nbusgreledg 29280 . . . . . . 7 (𝐺 ∈ USGraph → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐵, 𝐴} ∈ 𝐸))
13 prcom 4696 . . . . . . . . 9 {𝐵, 𝐴} = {𝐴, 𝐵}
1413a1i 11 . . . . . . . 8 (𝐺 ∈ USGraph → {𝐵, 𝐴} = {𝐴, 𝐵})
1514eleq1d 2813 . . . . . . 7 (𝐺 ∈ USGraph → ({𝐵, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸))
1612, 15bitrd 279 . . . . . 6 (𝐺 ∈ USGraph → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐵} ∈ 𝐸))
1710, 16syl 17 . . . . 5 (𝜑 → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐵} ∈ 𝐸))
1817adantr 480 . . . 4 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐵} ∈ 𝐸))
199, 18mpbid 232 . . 3 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → {𝐴, 𝐵} ∈ 𝐸)
20 prid2g 4725 . . . . . . . 8 (𝐶𝑍𝐶 ∈ {𝐵, 𝐶})
21203ad2ant3 1135 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 ∈ {𝐵, 𝐶})
221, 21syl 17 . . . . . 6 (𝜑𝐶 ∈ {𝐵, 𝐶})
2322adantr 480 . . . . 5 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐶 ∈ {𝐵, 𝐶})
24 eleq2 2817 . . . . . . 7 ({𝐵, 𝐶} = (𝐺 NeighbVtx 𝐴) → (𝐶 ∈ {𝐵, 𝐶} ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
2524eqcoms 2737 . . . . . 6 ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} → (𝐶 ∈ {𝐵, 𝐶} ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
2625adantl 481 . . . . 5 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐶 ∈ {𝐵, 𝐶} ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
2723, 26mpbid 232 . . . 4 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐶 ∈ (𝐺 NeighbVtx 𝐴))
2811nbusgreledg 29280 . . . . . . 7 (𝐺 ∈ USGraph → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐶, 𝐴} ∈ 𝐸))
29 prcom 4696 . . . . . . . . 9 {𝐶, 𝐴} = {𝐴, 𝐶}
3029a1i 11 . . . . . . . 8 (𝐺 ∈ USGraph → {𝐶, 𝐴} = {𝐴, 𝐶})
3130eleq1d 2813 . . . . . . 7 (𝐺 ∈ USGraph → ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸))
3228, 31bitrd 279 . . . . . 6 (𝐺 ∈ USGraph → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐶} ∈ 𝐸))
3310, 32syl 17 . . . . 5 (𝜑 → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐶} ∈ 𝐸))
3433adantr 480 . . . 4 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐶} ∈ 𝐸))
3527, 34mpbid 232 . . 3 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → {𝐴, 𝐶} ∈ 𝐸)
3619, 35jca 511 . 2 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))
37 nb3grpr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
3837, 11nbusgr 29276 . . . . 5 (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐴) = {𝑣𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸})
3910, 38syl 17 . . . 4 (𝜑 → (𝐺 NeighbVtx 𝐴) = {𝑣𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸})
4039adantr 480 . . 3 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝐺 NeighbVtx 𝐴) = {𝑣𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸})
41 nb3grpr.t . . . . . . . . . 10 (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
42 eleq2 2817 . . . . . . . . . 10 (𝑉 = {𝐴, 𝐵, 𝐶} → (𝑣𝑉𝑣 ∈ {𝐴, 𝐵, 𝐶}))
4341, 42syl 17 . . . . . . . . 9 (𝜑 → (𝑣𝑉𝑣 ∈ {𝐴, 𝐵, 𝐶}))
4443adantr 480 . . . . . . . 8 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣𝑉𝑣 ∈ {𝐴, 𝐵, 𝐶}))
45 vex 3451 . . . . . . . . . . 11 𝑣 ∈ V
4645eltp 4653 . . . . . . . . . 10 (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑣 = 𝐴𝑣 = 𝐵𝑣 = 𝐶))
4711usgredgne 29133 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ {𝐴, 𝑣} ∈ 𝐸) → 𝐴𝑣)
48 df-ne 2926 . . . . . . . . . . . . . . . . 17 (𝐴𝑣 ↔ ¬ 𝐴 = 𝑣)
49 pm2.24 124 . . . . . . . . . . . . . . . . . . 19 (𝐴 = 𝑣 → (¬ 𝐴 = 𝑣 → (𝑣 = 𝐵𝑣 = 𝐶)))
5049eqcoms 2737 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐴 → (¬ 𝐴 = 𝑣 → (𝑣 = 𝐵𝑣 = 𝐶)))
5150com12 32 . . . . . . . . . . . . . . . . 17 𝐴 = 𝑣 → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶)))
5248, 51sylbi 217 . . . . . . . . . . . . . . . 16 (𝐴𝑣 → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶)))
5347, 52syl 17 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ {𝐴, 𝑣} ∈ 𝐸) → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶)))
5453ex 412 . . . . . . . . . . . . . 14 (𝐺 ∈ USGraph → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶))))
5510, 54syl 17 . . . . . . . . . . . . 13 (𝜑 → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶))))
5655adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶))))
5756com3r 87 . . . . . . . . . . 11 (𝑣 = 𝐴 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
58 orc 867 . . . . . . . . . . . 12 (𝑣 = 𝐵 → (𝑣 = 𝐵𝑣 = 𝐶))
59582a1d 26 . . . . . . . . . . 11 (𝑣 = 𝐵 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
60 olc 868 . . . . . . . . . . . 12 (𝑣 = 𝐶 → (𝑣 = 𝐵𝑣 = 𝐶))
61602a1d 26 . . . . . . . . . . 11 (𝑣 = 𝐶 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
6257, 59, 613jaoi 1430 . . . . . . . . . 10 ((𝑣 = 𝐴𝑣 = 𝐵𝑣 = 𝐶) → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
6346, 62sylbi 217 . . . . . . . . 9 (𝑣 ∈ {𝐴, 𝐵, 𝐶} → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
6463com12 32 . . . . . . . 8 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 ∈ {𝐴, 𝐵, 𝐶} → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
6544, 64sylbid 240 . . . . . . 7 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣𝑉 → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
6665impd 410 . . . . . 6 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ((𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸) → (𝑣 = 𝐵𝑣 = 𝐶)))
67 eqid 2729 . . . . . . . . . . . . . . . . . 18 𝐵 = 𝐵
68673mix2i 1335 . . . . . . . . . . . . . . . . 17 (𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶)
691simp2d 1143 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵𝑌)
70 eltpg 4650 . . . . . . . . . . . . . . . . . 18 (𝐵𝑌 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶)))
7169, 70syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶)))
7268, 71mpbiri 258 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ {𝐴, 𝐵, 𝐶})
7372adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑣 = 𝐵) → 𝐵 ∈ {𝐴, 𝐵, 𝐶})
74 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝐵 → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐵 ∈ {𝐴, 𝐵, 𝐶}))
7574bicomd 223 . . . . . . . . . . . . . . . 16 (𝑣 = 𝐵 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶}))
7675adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑣 = 𝐵) → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶}))
7773, 76mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝑣 = 𝐵) → 𝑣 ∈ {𝐴, 𝐵, 𝐶})
7842bicomd 223 . . . . . . . . . . . . . . . 16 (𝑉 = {𝐴, 𝐵, 𝐶} → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣𝑉))
7941, 78syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣𝑉))
8079adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑣 = 𝐵) → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣𝑉))
8177, 80mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑣 = 𝐵) → 𝑣𝑉)
8281ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑣 = 𝐵𝑣𝑉))
8382adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐵𝑣𝑉))
8483impcom 407 . . . . . . . . . 10 ((𝑣 = 𝐵 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → 𝑣𝑉)
85 preq2 4698 . . . . . . . . . . . . . . 15 (𝐵 = 𝑣 → {𝐴, 𝐵} = {𝐴, 𝑣})
8685eleq1d 2813 . . . . . . . . . . . . . 14 (𝐵 = 𝑣 → ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸))
8786eqcoms 2737 . . . . . . . . . . . . 13 (𝑣 = 𝐵 → ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸))
8887biimpcd 249 . . . . . . . . . . . 12 ({𝐴, 𝐵} ∈ 𝐸 → (𝑣 = 𝐵 → {𝐴, 𝑣} ∈ 𝐸))
8988ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐵 → {𝐴, 𝑣} ∈ 𝐸))
9089impcom 407 . . . . . . . . . 10 ((𝑣 = 𝐵 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → {𝐴, 𝑣} ∈ 𝐸)
9184, 90jca 511 . . . . . . . . 9 ((𝑣 = 𝐵 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸))
9291ex 412 . . . . . . . 8 (𝑣 = 𝐵 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)))
93 tpid3g 4736 . . . . . . . . . . . . . . . . . 18 (𝐶𝑍𝐶 ∈ {𝐴, 𝐵, 𝐶})
94933ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
951, 94syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ {𝐴, 𝐵, 𝐶})
9695adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑣 = 𝐶) → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
97 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝐶 → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
9897bicomd 223 . . . . . . . . . . . . . . . 16 (𝑣 = 𝐶 → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶}))
9998adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑣 = 𝐶) → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶}))
10096, 99mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝑣 = 𝐶) → 𝑣 ∈ {𝐴, 𝐵, 𝐶})
10179adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑣 = 𝐶) → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣𝑉))
102100, 101mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑣 = 𝐶) → 𝑣𝑉)
103102ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑣 = 𝐶𝑣𝑉))
104103adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐶𝑣𝑉))
105104impcom 407 . . . . . . . . . 10 ((𝑣 = 𝐶 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → 𝑣𝑉)
106 preq2 4698 . . . . . . . . . . . . . . 15 (𝐶 = 𝑣 → {𝐴, 𝐶} = {𝐴, 𝑣})
107106eleq1d 2813 . . . . . . . . . . . . . 14 (𝐶 = 𝑣 → ({𝐴, 𝐶} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸))
108107eqcoms 2737 . . . . . . . . . . . . 13 (𝑣 = 𝐶 → ({𝐴, 𝐶} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸))
109108biimpcd 249 . . . . . . . . . . . 12 ({𝐴, 𝐶} ∈ 𝐸 → (𝑣 = 𝐶 → {𝐴, 𝑣} ∈ 𝐸))
110109ad2antll 729 . . . . . . . . . . 11 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐶 → {𝐴, 𝑣} ∈ 𝐸))
111110impcom 407 . . . . . . . . . 10 ((𝑣 = 𝐶 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → {𝐴, 𝑣} ∈ 𝐸)
112105, 111jca 511 . . . . . . . . 9 ((𝑣 = 𝐶 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸))
113112ex 412 . . . . . . . 8 (𝑣 = 𝐶 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)))
11492, 113jaoi 857 . . . . . . 7 ((𝑣 = 𝐵𝑣 = 𝐶) → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)))
115114com12 32 . . . . . 6 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ((𝑣 = 𝐵𝑣 = 𝐶) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)))
11666, 115impbid 212 . . . . 5 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ((𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸) ↔ (𝑣 = 𝐵𝑣 = 𝐶)))
117116abbidv 2795 . . . 4 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → {𝑣 ∣ (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)} = {𝑣 ∣ (𝑣 = 𝐵𝑣 = 𝐶)})
118 df-rab 3406 . . . 4 {𝑣𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸} = {𝑣 ∣ (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)}
119 dfpr2 4610 . . . 4 {𝐵, 𝐶} = {𝑣 ∣ (𝑣 = 𝐵𝑣 = 𝐶)}
120117, 118, 1193eqtr4g 2789 . . 3 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → {𝑣𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸} = {𝐵, 𝐶})
12140, 120eqtrd 2764 . 2 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶})
12236, 121impbida 800 1 (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  {crab 3405  {cpr 4591  {ctp 4593  cfv 6511  (class class class)co 7387  Vtxcvtx 28923  Edgcedg 28974  USGraphcusgr 29076   NeighbVtx cnbgr 29259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296  df-edg 28975  df-upgr 29009  df-umgr 29010  df-usgr 29078  df-nbgr 29260
This theorem is referenced by:  nb3grpr  29309  nb3grpr2  29310  nb3gr2nb  29311
  Copyright terms: Public domain W3C validator