| Step | Hyp | Ref
| Expression |
| 1 | | nb3grpr.s |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) |
| 2 | | prid1g 4760 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝑌 → 𝐵 ∈ {𝐵, 𝐶}) |
| 3 | 2 | 3ad2ant2 1135 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐵 ∈ {𝐵, 𝐶}) |
| 4 | 1, 3 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ {𝐵, 𝐶}) |
| 5 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐵 ∈ {𝐵, 𝐶}) |
| 6 | | eleq2 2830 |
. . . . . . 7
⊢ ({𝐵, 𝐶} = (𝐺 NeighbVtx 𝐴) → (𝐵 ∈ {𝐵, 𝐶} ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴))) |
| 7 | 6 | eqcoms 2745 |
. . . . . 6
⊢ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} → (𝐵 ∈ {𝐵, 𝐶} ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴))) |
| 8 | 7 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐵 ∈ {𝐵, 𝐶} ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴))) |
| 9 | 5, 8 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐵 ∈ (𝐺 NeighbVtx 𝐴)) |
| 10 | | nb3grpr.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ USGraph) |
| 11 | | nb3grpr.e |
. . . . . . . 8
⊢ 𝐸 = (Edg‘𝐺) |
| 12 | 11 | nbusgreledg 29370 |
. . . . . . 7
⊢ (𝐺 ∈ USGraph → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐵, 𝐴} ∈ 𝐸)) |
| 13 | | prcom 4732 |
. . . . . . . . 9
⊢ {𝐵, 𝐴} = {𝐴, 𝐵} |
| 14 | 13 | a1i 11 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph → {𝐵, 𝐴} = {𝐴, 𝐵}) |
| 15 | 14 | eleq1d 2826 |
. . . . . . 7
⊢ (𝐺 ∈ USGraph → ({𝐵, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸)) |
| 16 | 12, 15 | bitrd 279 |
. . . . . 6
⊢ (𝐺 ∈ USGraph → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐵} ∈ 𝐸)) |
| 17 | 10, 16 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐵} ∈ 𝐸)) |
| 18 | 17 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐵} ∈ 𝐸)) |
| 19 | 9, 18 | mpbid 232 |
. . 3
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → {𝐴, 𝐵} ∈ 𝐸) |
| 20 | | prid2g 4761 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝑍 → 𝐶 ∈ {𝐵, 𝐶}) |
| 21 | 20 | 3ad2ant3 1136 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 ∈ {𝐵, 𝐶}) |
| 22 | 1, 21 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ {𝐵, 𝐶}) |
| 23 | 22 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐶 ∈ {𝐵, 𝐶}) |
| 24 | | eleq2 2830 |
. . . . . . 7
⊢ ({𝐵, 𝐶} = (𝐺 NeighbVtx 𝐴) → (𝐶 ∈ {𝐵, 𝐶} ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))) |
| 25 | 24 | eqcoms 2745 |
. . . . . 6
⊢ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} → (𝐶 ∈ {𝐵, 𝐶} ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))) |
| 26 | 25 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐶 ∈ {𝐵, 𝐶} ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))) |
| 27 | 23, 26 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) |
| 28 | 11 | nbusgreledg 29370 |
. . . . . . 7
⊢ (𝐺 ∈ USGraph → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐶, 𝐴} ∈ 𝐸)) |
| 29 | | prcom 4732 |
. . . . . . . . 9
⊢ {𝐶, 𝐴} = {𝐴, 𝐶} |
| 30 | 29 | a1i 11 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph → {𝐶, 𝐴} = {𝐴, 𝐶}) |
| 31 | 30 | eleq1d 2826 |
. . . . . . 7
⊢ (𝐺 ∈ USGraph → ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸)) |
| 32 | 28, 31 | bitrd 279 |
. . . . . 6
⊢ (𝐺 ∈ USGraph → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐶} ∈ 𝐸)) |
| 33 | 10, 32 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐶} ∈ 𝐸)) |
| 34 | 33 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐶} ∈ 𝐸)) |
| 35 | 27, 34 | mpbid 232 |
. . 3
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → {𝐴, 𝐶} ∈ 𝐸) |
| 36 | 19, 35 | jca 511 |
. 2
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) |
| 37 | | nb3grpr.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
| 38 | 37, 11 | nbusgr 29366 |
. . . . 5
⊢ (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐴) = {𝑣 ∈ 𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸}) |
| 39 | 10, 38 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐺 NeighbVtx 𝐴) = {𝑣 ∈ 𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸}) |
| 40 | 39 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝐺 NeighbVtx 𝐴) = {𝑣 ∈ 𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸}) |
| 41 | | nb3grpr.t |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) |
| 42 | | eleq2 2830 |
. . . . . . . . . 10
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → (𝑣 ∈ 𝑉 ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶})) |
| 43 | 41, 42 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑣 ∈ 𝑉 ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶})) |
| 44 | 43 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 ∈ 𝑉 ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶})) |
| 45 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑣 ∈ V |
| 46 | 45 | eltp 4689 |
. . . . . . . . . 10
⊢ (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑣 = 𝐴 ∨ 𝑣 = 𝐵 ∨ 𝑣 = 𝐶)) |
| 47 | 11 | usgredgne 29223 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ USGraph ∧ {𝐴, 𝑣} ∈ 𝐸) → 𝐴 ≠ 𝑣) |
| 48 | | df-ne 2941 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ≠ 𝑣 ↔ ¬ 𝐴 = 𝑣) |
| 49 | | pm2.24 124 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 = 𝑣 → (¬ 𝐴 = 𝑣 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶))) |
| 50 | 49 | eqcoms 2745 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝐴 → (¬ 𝐴 = 𝑣 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶))) |
| 51 | 50 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝐴 = 𝑣 → (𝑣 = 𝐴 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶))) |
| 52 | 48, 51 | sylbi 217 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ≠ 𝑣 → (𝑣 = 𝐴 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶))) |
| 53 | 47, 52 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ USGraph ∧ {𝐴, 𝑣} ∈ 𝐸) → (𝑣 = 𝐴 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶))) |
| 54 | 53 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ USGraph → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐴 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
| 55 | 10, 54 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐴 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
| 56 | 55 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐴 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
| 57 | 56 | com3r 87 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝐴 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
| 58 | | orc 868 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝐵 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)) |
| 59 | 58 | 2a1d 26 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝐵 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
| 60 | | olc 869 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝐶 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)) |
| 61 | 60 | 2a1d 26 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝐶 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
| 62 | 57, 59, 61 | 3jaoi 1430 |
. . . . . . . . . 10
⊢ ((𝑣 = 𝐴 ∨ 𝑣 = 𝐵 ∨ 𝑣 = 𝐶) → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
| 63 | 46, 62 | sylbi 217 |
. . . . . . . . 9
⊢ (𝑣 ∈ {𝐴, 𝐵, 𝐶} → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
| 64 | 63 | com12 32 |
. . . . . . . 8
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 ∈ {𝐴, 𝐵, 𝐶} → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
| 65 | 44, 64 | sylbid 240 |
. . . . . . 7
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 ∈ 𝑉 → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
| 66 | 65 | impd 410 |
. . . . . 6
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ((𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸) → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶))) |
| 67 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐵 = 𝐵 |
| 68 | 67 | 3mix2i 1335 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶) |
| 69 | 1 | simp2d 1144 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ∈ 𝑌) |
| 70 | | eltpg 4686 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ 𝑌 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶))) |
| 71 | 69, 70 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶))) |
| 72 | 68, 71 | mpbiri 258 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵 ∈ {𝐴, 𝐵, 𝐶}) |
| 73 | 72 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑣 = 𝐵) → 𝐵 ∈ {𝐴, 𝐵, 𝐶}) |
| 74 | | eleq1 2829 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝐵 → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐵 ∈ {𝐴, 𝐵, 𝐶})) |
| 75 | 74 | bicomd 223 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝐵 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶})) |
| 76 | 75 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑣 = 𝐵) → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶})) |
| 77 | 73, 76 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 = 𝐵) → 𝑣 ∈ {𝐴, 𝐵, 𝐶}) |
| 78 | 42 | bicomd 223 |
. . . . . . . . . . . . . . . 16
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ 𝑉)) |
| 79 | 41, 78 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ 𝑉)) |
| 80 | 79 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 = 𝐵) → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ 𝑉)) |
| 81 | 77, 80 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 = 𝐵) → 𝑣 ∈ 𝑉) |
| 82 | 81 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑣 = 𝐵 → 𝑣 ∈ 𝑉)) |
| 83 | 82 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐵 → 𝑣 ∈ 𝑉)) |
| 84 | 83 | impcom 407 |
. . . . . . . . . 10
⊢ ((𝑣 = 𝐵 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → 𝑣 ∈ 𝑉) |
| 85 | | preq2 4734 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 = 𝑣 → {𝐴, 𝐵} = {𝐴, 𝑣}) |
| 86 | 85 | eleq1d 2826 |
. . . . . . . . . . . . . 14
⊢ (𝐵 = 𝑣 → ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸)) |
| 87 | 86 | eqcoms 2745 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝐵 → ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸)) |
| 88 | 87 | biimpcd 249 |
. . . . . . . . . . . 12
⊢ ({𝐴, 𝐵} ∈ 𝐸 → (𝑣 = 𝐵 → {𝐴, 𝑣} ∈ 𝐸)) |
| 89 | 88 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐵 → {𝐴, 𝑣} ∈ 𝐸)) |
| 90 | 89 | impcom 407 |
. . . . . . . . . 10
⊢ ((𝑣 = 𝐵 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → {𝐴, 𝑣} ∈ 𝐸) |
| 91 | 84, 90 | jca 511 |
. . . . . . . . 9
⊢ ((𝑣 = 𝐵 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → (𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)) |
| 92 | 91 | ex 412 |
. . . . . . . 8
⊢ (𝑣 = 𝐵 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸))) |
| 93 | | tpid3g 4772 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐶 ∈ 𝑍 → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
| 94 | 93 | 3ad2ant3 1136 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
| 95 | 1, 94 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
| 96 | 95 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑣 = 𝐶) → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
| 97 | | eleq1 2829 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝐶 → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐶 ∈ {𝐴, 𝐵, 𝐶})) |
| 98 | 97 | bicomd 223 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝐶 → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶})) |
| 99 | 98 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑣 = 𝐶) → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶})) |
| 100 | 96, 99 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 = 𝐶) → 𝑣 ∈ {𝐴, 𝐵, 𝐶}) |
| 101 | 79 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 = 𝐶) → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ 𝑉)) |
| 102 | 100, 101 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 = 𝐶) → 𝑣 ∈ 𝑉) |
| 103 | 102 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑣 = 𝐶 → 𝑣 ∈ 𝑉)) |
| 104 | 103 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐶 → 𝑣 ∈ 𝑉)) |
| 105 | 104 | impcom 407 |
. . . . . . . . . 10
⊢ ((𝑣 = 𝐶 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → 𝑣 ∈ 𝑉) |
| 106 | | preq2 4734 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 = 𝑣 → {𝐴, 𝐶} = {𝐴, 𝑣}) |
| 107 | 106 | eleq1d 2826 |
. . . . . . . . . . . . . 14
⊢ (𝐶 = 𝑣 → ({𝐴, 𝐶} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸)) |
| 108 | 107 | eqcoms 2745 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝐶 → ({𝐴, 𝐶} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸)) |
| 109 | 108 | biimpcd 249 |
. . . . . . . . . . . 12
⊢ ({𝐴, 𝐶} ∈ 𝐸 → (𝑣 = 𝐶 → {𝐴, 𝑣} ∈ 𝐸)) |
| 110 | 109 | ad2antll 729 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐶 → {𝐴, 𝑣} ∈ 𝐸)) |
| 111 | 110 | impcom 407 |
. . . . . . . . . 10
⊢ ((𝑣 = 𝐶 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → {𝐴, 𝑣} ∈ 𝐸) |
| 112 | 105, 111 | jca 511 |
. . . . . . . . 9
⊢ ((𝑣 = 𝐶 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → (𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)) |
| 113 | 112 | ex 412 |
. . . . . . . 8
⊢ (𝑣 = 𝐶 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸))) |
| 114 | 92, 113 | jaoi 858 |
. . . . . . 7
⊢ ((𝑣 = 𝐵 ∨ 𝑣 = 𝐶) → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸))) |
| 115 | 114 | com12 32 |
. . . . . 6
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ((𝑣 = 𝐵 ∨ 𝑣 = 𝐶) → (𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸))) |
| 116 | 66, 115 | impbid 212 |
. . . . 5
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ((𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸) ↔ (𝑣 = 𝐵 ∨ 𝑣 = 𝐶))) |
| 117 | 116 | abbidv 2808 |
. . . 4
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → {𝑣 ∣ (𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)} = {𝑣 ∣ (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)}) |
| 118 | | df-rab 3437 |
. . . 4
⊢ {𝑣 ∈ 𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸} = {𝑣 ∣ (𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)} |
| 119 | | dfpr2 4646 |
. . . 4
⊢ {𝐵, 𝐶} = {𝑣 ∣ (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)} |
| 120 | 117, 118,
119 | 3eqtr4g 2802 |
. . 3
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → {𝑣 ∈ 𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸} = {𝐵, 𝐶}) |
| 121 | 40, 120 | eqtrd 2777 |
. 2
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) |
| 122 | 36, 121 | impbida 801 |
1
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) |