Step | Hyp | Ref
| Expression |
1 | | nb3grpr.s |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) |
2 | | prid1g 4693 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝑌 → 𝐵 ∈ {𝐵, 𝐶}) |
3 | 2 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐵 ∈ {𝐵, 𝐶}) |
4 | 1, 3 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ {𝐵, 𝐶}) |
5 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐵 ∈ {𝐵, 𝐶}) |
6 | | eleq2 2827 |
. . . . . . 7
⊢ ({𝐵, 𝐶} = (𝐺 NeighbVtx 𝐴) → (𝐵 ∈ {𝐵, 𝐶} ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴))) |
7 | 6 | eqcoms 2746 |
. . . . . 6
⊢ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} → (𝐵 ∈ {𝐵, 𝐶} ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴))) |
8 | 7 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐵 ∈ {𝐵, 𝐶} ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴))) |
9 | 5, 8 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐵 ∈ (𝐺 NeighbVtx 𝐴)) |
10 | | nb3grpr.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ USGraph) |
11 | | nb3grpr.e |
. . . . . . . 8
⊢ 𝐸 = (Edg‘𝐺) |
12 | 11 | nbusgreledg 27623 |
. . . . . . 7
⊢ (𝐺 ∈ USGraph → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐵, 𝐴} ∈ 𝐸)) |
13 | | prcom 4665 |
. . . . . . . . 9
⊢ {𝐵, 𝐴} = {𝐴, 𝐵} |
14 | 13 | a1i 11 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph → {𝐵, 𝐴} = {𝐴, 𝐵}) |
15 | 14 | eleq1d 2823 |
. . . . . . 7
⊢ (𝐺 ∈ USGraph → ({𝐵, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸)) |
16 | 12, 15 | bitrd 278 |
. . . . . 6
⊢ (𝐺 ∈ USGraph → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐵} ∈ 𝐸)) |
17 | 10, 16 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐵} ∈ 𝐸)) |
18 | 17 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐵} ∈ 𝐸)) |
19 | 9, 18 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → {𝐴, 𝐵} ∈ 𝐸) |
20 | | prid2g 4694 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝑍 → 𝐶 ∈ {𝐵, 𝐶}) |
21 | 20 | 3ad2ant3 1133 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 ∈ {𝐵, 𝐶}) |
22 | 1, 21 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ {𝐵, 𝐶}) |
23 | 22 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐶 ∈ {𝐵, 𝐶}) |
24 | | eleq2 2827 |
. . . . . . 7
⊢ ({𝐵, 𝐶} = (𝐺 NeighbVtx 𝐴) → (𝐶 ∈ {𝐵, 𝐶} ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))) |
25 | 24 | eqcoms 2746 |
. . . . . 6
⊢ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} → (𝐶 ∈ {𝐵, 𝐶} ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))) |
26 | 25 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐶 ∈ {𝐵, 𝐶} ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))) |
27 | 23, 26 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) |
28 | 11 | nbusgreledg 27623 |
. . . . . . 7
⊢ (𝐺 ∈ USGraph → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐶, 𝐴} ∈ 𝐸)) |
29 | | prcom 4665 |
. . . . . . . . 9
⊢ {𝐶, 𝐴} = {𝐴, 𝐶} |
30 | 29 | a1i 11 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph → {𝐶, 𝐴} = {𝐴, 𝐶}) |
31 | 30 | eleq1d 2823 |
. . . . . . 7
⊢ (𝐺 ∈ USGraph → ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸)) |
32 | 28, 31 | bitrd 278 |
. . . . . 6
⊢ (𝐺 ∈ USGraph → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐶} ∈ 𝐸)) |
33 | 10, 32 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐶} ∈ 𝐸)) |
34 | 33 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐶} ∈ 𝐸)) |
35 | 27, 34 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → {𝐴, 𝐶} ∈ 𝐸) |
36 | 19, 35 | jca 511 |
. 2
⊢ ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) |
37 | | nb3grpr.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
38 | 37, 11 | nbusgr 27619 |
. . . . 5
⊢ (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐴) = {𝑣 ∈ 𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸}) |
39 | 10, 38 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐺 NeighbVtx 𝐴) = {𝑣 ∈ 𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸}) |
40 | 39 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝐺 NeighbVtx 𝐴) = {𝑣 ∈ 𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸}) |
41 | | nb3grpr.t |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) |
42 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → (𝑣 ∈ 𝑉 ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶})) |
43 | 41, 42 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑣 ∈ 𝑉 ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶})) |
44 | 43 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 ∈ 𝑉 ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶})) |
45 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑣 ∈ V |
46 | 45 | eltp 4621 |
. . . . . . . . . 10
⊢ (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑣 = 𝐴 ∨ 𝑣 = 𝐵 ∨ 𝑣 = 𝐶)) |
47 | 11 | usgredgne 27476 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ USGraph ∧ {𝐴, 𝑣} ∈ 𝐸) → 𝐴 ≠ 𝑣) |
48 | | df-ne 2943 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ≠ 𝑣 ↔ ¬ 𝐴 = 𝑣) |
49 | | pm2.24 124 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 = 𝑣 → (¬ 𝐴 = 𝑣 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶))) |
50 | 49 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝐴 → (¬ 𝐴 = 𝑣 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶))) |
51 | 50 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝐴 = 𝑣 → (𝑣 = 𝐴 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶))) |
52 | 48, 51 | sylbi 216 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ≠ 𝑣 → (𝑣 = 𝐴 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶))) |
53 | 47, 52 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ USGraph ∧ {𝐴, 𝑣} ∈ 𝐸) → (𝑣 = 𝐴 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶))) |
54 | 53 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ USGraph → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐴 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
55 | 10, 54 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐴 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
56 | 55 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐴 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
57 | 56 | com3r 87 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝐴 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
58 | | orc 863 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝐵 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)) |
59 | 58 | 2a1d 26 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝐵 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
60 | | olc 864 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝐶 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)) |
61 | 60 | 2a1d 26 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝐶 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
62 | 57, 59, 61 | 3jaoi 1425 |
. . . . . . . . . 10
⊢ ((𝑣 = 𝐴 ∨ 𝑣 = 𝐵 ∨ 𝑣 = 𝐶) → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
63 | 46, 62 | sylbi 216 |
. . . . . . . . 9
⊢ (𝑣 ∈ {𝐴, 𝐵, 𝐶} → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
64 | 63 | com12 32 |
. . . . . . . 8
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 ∈ {𝐴, 𝐵, 𝐶} → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
65 | 44, 64 | sylbid 239 |
. . . . . . 7
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 ∈ 𝑉 → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)))) |
66 | 65 | impd 410 |
. . . . . 6
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ((𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸) → (𝑣 = 𝐵 ∨ 𝑣 = 𝐶))) |
67 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐵 = 𝐵 |
68 | 67 | 3mix2i 1332 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶) |
69 | 1 | simp2d 1141 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ∈ 𝑌) |
70 | | eltpg 4618 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ 𝑌 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶))) |
71 | 69, 70 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶))) |
72 | 68, 71 | mpbiri 257 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵 ∈ {𝐴, 𝐵, 𝐶}) |
73 | 72 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑣 = 𝐵) → 𝐵 ∈ {𝐴, 𝐵, 𝐶}) |
74 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝐵 → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐵 ∈ {𝐴, 𝐵, 𝐶})) |
75 | 74 | bicomd 222 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝐵 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶})) |
76 | 75 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑣 = 𝐵) → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶})) |
77 | 73, 76 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 = 𝐵) → 𝑣 ∈ {𝐴, 𝐵, 𝐶}) |
78 | 42 | bicomd 222 |
. . . . . . . . . . . . . . . 16
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ 𝑉)) |
79 | 41, 78 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ 𝑉)) |
80 | 79 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 = 𝐵) → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ 𝑉)) |
81 | 77, 80 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 = 𝐵) → 𝑣 ∈ 𝑉) |
82 | 81 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑣 = 𝐵 → 𝑣 ∈ 𝑉)) |
83 | 82 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐵 → 𝑣 ∈ 𝑉)) |
84 | 83 | impcom 407 |
. . . . . . . . . 10
⊢ ((𝑣 = 𝐵 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → 𝑣 ∈ 𝑉) |
85 | | preq2 4667 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 = 𝑣 → {𝐴, 𝐵} = {𝐴, 𝑣}) |
86 | 85 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝐵 = 𝑣 → ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸)) |
87 | 86 | eqcoms 2746 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝐵 → ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸)) |
88 | 87 | biimpcd 248 |
. . . . . . . . . . . 12
⊢ ({𝐴, 𝐵} ∈ 𝐸 → (𝑣 = 𝐵 → {𝐴, 𝑣} ∈ 𝐸)) |
89 | 88 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐵 → {𝐴, 𝑣} ∈ 𝐸)) |
90 | 89 | impcom 407 |
. . . . . . . . . 10
⊢ ((𝑣 = 𝐵 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → {𝐴, 𝑣} ∈ 𝐸) |
91 | 84, 90 | jca 511 |
. . . . . . . . 9
⊢ ((𝑣 = 𝐵 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → (𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)) |
92 | 91 | ex 412 |
. . . . . . . 8
⊢ (𝑣 = 𝐵 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸))) |
93 | | tpid3g 4705 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐶 ∈ 𝑍 → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
94 | 93 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
95 | 1, 94 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
96 | 95 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑣 = 𝐶) → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
97 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝐶 → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐶 ∈ {𝐴, 𝐵, 𝐶})) |
98 | 97 | bicomd 222 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝐶 → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶})) |
99 | 98 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑣 = 𝐶) → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶})) |
100 | 96, 99 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 = 𝐶) → 𝑣 ∈ {𝐴, 𝐵, 𝐶}) |
101 | 79 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 = 𝐶) → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ 𝑉)) |
102 | 100, 101 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 = 𝐶) → 𝑣 ∈ 𝑉) |
103 | 102 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑣 = 𝐶 → 𝑣 ∈ 𝑉)) |
104 | 103 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐶 → 𝑣 ∈ 𝑉)) |
105 | 104 | impcom 407 |
. . . . . . . . . 10
⊢ ((𝑣 = 𝐶 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → 𝑣 ∈ 𝑉) |
106 | | preq2 4667 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 = 𝑣 → {𝐴, 𝐶} = {𝐴, 𝑣}) |
107 | 106 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝐶 = 𝑣 → ({𝐴, 𝐶} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸)) |
108 | 107 | eqcoms 2746 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝐶 → ({𝐴, 𝐶} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸)) |
109 | 108 | biimpcd 248 |
. . . . . . . . . . . 12
⊢ ({𝐴, 𝐶} ∈ 𝐸 → (𝑣 = 𝐶 → {𝐴, 𝑣} ∈ 𝐸)) |
110 | 109 | ad2antll 725 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐶 → {𝐴, 𝑣} ∈ 𝐸)) |
111 | 110 | impcom 407 |
. . . . . . . . . 10
⊢ ((𝑣 = 𝐶 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → {𝐴, 𝑣} ∈ 𝐸) |
112 | 105, 111 | jca 511 |
. . . . . . . . 9
⊢ ((𝑣 = 𝐶 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → (𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)) |
113 | 112 | ex 412 |
. . . . . . . 8
⊢ (𝑣 = 𝐶 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸))) |
114 | 92, 113 | jaoi 853 |
. . . . . . 7
⊢ ((𝑣 = 𝐵 ∨ 𝑣 = 𝐶) → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸))) |
115 | 114 | com12 32 |
. . . . . 6
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ((𝑣 = 𝐵 ∨ 𝑣 = 𝐶) → (𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸))) |
116 | 66, 115 | impbid 211 |
. . . . 5
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ((𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸) ↔ (𝑣 = 𝐵 ∨ 𝑣 = 𝐶))) |
117 | 116 | abbidv 2808 |
. . . 4
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → {𝑣 ∣ (𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)} = {𝑣 ∣ (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)}) |
118 | | df-rab 3072 |
. . . 4
⊢ {𝑣 ∈ 𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸} = {𝑣 ∣ (𝑣 ∈ 𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)} |
119 | | dfpr2 4577 |
. . . 4
⊢ {𝐵, 𝐶} = {𝑣 ∣ (𝑣 = 𝐵 ∨ 𝑣 = 𝐶)} |
120 | 117, 118,
119 | 3eqtr4g 2804 |
. . 3
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → {𝑣 ∈ 𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸} = {𝐵, 𝐶}) |
121 | 40, 120 | eqtrd 2778 |
. 2
⊢ ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) |
122 | 36, 121 | impbida 797 |
1
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) |