MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nb3grprlem1 Structured version   Visualization version   GIF version

Theorem nb3grprlem1 27650
Description: Lemma 1 for nb3grpr 27652. (Contributed by Alexander van der Vekens, 15-Oct-2017.) (Revised by AV, 28-Oct-2020.)
Hypotheses
Ref Expression
nb3grpr.v 𝑉 = (Vtx‘𝐺)
nb3grpr.e 𝐸 = (Edg‘𝐺)
nb3grpr.g (𝜑𝐺 ∈ USGraph)
nb3grpr.t (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
nb3grpr.s (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
Assertion
Ref Expression
nb3grprlem1 (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)))

Proof of Theorem nb3grprlem1
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nb3grpr.s . . . . . . 7 (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
2 prid1g 4693 . . . . . . . 8 (𝐵𝑌𝐵 ∈ {𝐵, 𝐶})
323ad2ant2 1132 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐵 ∈ {𝐵, 𝐶})
41, 3syl 17 . . . . . 6 (𝜑𝐵 ∈ {𝐵, 𝐶})
54adantr 480 . . . . 5 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐵 ∈ {𝐵, 𝐶})
6 eleq2 2827 . . . . . . 7 ({𝐵, 𝐶} = (𝐺 NeighbVtx 𝐴) → (𝐵 ∈ {𝐵, 𝐶} ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴)))
76eqcoms 2746 . . . . . 6 ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} → (𝐵 ∈ {𝐵, 𝐶} ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴)))
87adantl 481 . . . . 5 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐵 ∈ {𝐵, 𝐶} ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴)))
95, 8mpbid 231 . . . 4 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐵 ∈ (𝐺 NeighbVtx 𝐴))
10 nb3grpr.g . . . . . 6 (𝜑𝐺 ∈ USGraph)
11 nb3grpr.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
1211nbusgreledg 27623 . . . . . . 7 (𝐺 ∈ USGraph → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐵, 𝐴} ∈ 𝐸))
13 prcom 4665 . . . . . . . . 9 {𝐵, 𝐴} = {𝐴, 𝐵}
1413a1i 11 . . . . . . . 8 (𝐺 ∈ USGraph → {𝐵, 𝐴} = {𝐴, 𝐵})
1514eleq1d 2823 . . . . . . 7 (𝐺 ∈ USGraph → ({𝐵, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸))
1612, 15bitrd 278 . . . . . 6 (𝐺 ∈ USGraph → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐵} ∈ 𝐸))
1710, 16syl 17 . . . . 5 (𝜑 → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐵} ∈ 𝐸))
1817adantr 480 . . . 4 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐵} ∈ 𝐸))
199, 18mpbid 231 . . 3 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → {𝐴, 𝐵} ∈ 𝐸)
20 prid2g 4694 . . . . . . . 8 (𝐶𝑍𝐶 ∈ {𝐵, 𝐶})
21203ad2ant3 1133 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 ∈ {𝐵, 𝐶})
221, 21syl 17 . . . . . 6 (𝜑𝐶 ∈ {𝐵, 𝐶})
2322adantr 480 . . . . 5 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐶 ∈ {𝐵, 𝐶})
24 eleq2 2827 . . . . . . 7 ({𝐵, 𝐶} = (𝐺 NeighbVtx 𝐴) → (𝐶 ∈ {𝐵, 𝐶} ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
2524eqcoms 2746 . . . . . 6 ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} → (𝐶 ∈ {𝐵, 𝐶} ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
2625adantl 481 . . . . 5 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐶 ∈ {𝐵, 𝐶} ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
2723, 26mpbid 231 . . . 4 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → 𝐶 ∈ (𝐺 NeighbVtx 𝐴))
2811nbusgreledg 27623 . . . . . . 7 (𝐺 ∈ USGraph → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐶, 𝐴} ∈ 𝐸))
29 prcom 4665 . . . . . . . . 9 {𝐶, 𝐴} = {𝐴, 𝐶}
3029a1i 11 . . . . . . . 8 (𝐺 ∈ USGraph → {𝐶, 𝐴} = {𝐴, 𝐶})
3130eleq1d 2823 . . . . . . 7 (𝐺 ∈ USGraph → ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸))
3228, 31bitrd 278 . . . . . 6 (𝐺 ∈ USGraph → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐶} ∈ 𝐸))
3310, 32syl 17 . . . . 5 (𝜑 → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐶} ∈ 𝐸))
3433adantr 480 . . . 4 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐴, 𝐶} ∈ 𝐸))
3527, 34mpbid 231 . . 3 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → {𝐴, 𝐶} ∈ 𝐸)
3619, 35jca 511 . 2 ((𝜑 ∧ (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶}) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))
37 nb3grpr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
3837, 11nbusgr 27619 . . . . 5 (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝐴) = {𝑣𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸})
3910, 38syl 17 . . . 4 (𝜑 → (𝐺 NeighbVtx 𝐴) = {𝑣𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸})
4039adantr 480 . . 3 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝐺 NeighbVtx 𝐴) = {𝑣𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸})
41 nb3grpr.t . . . . . . . . . 10 (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
42 eleq2 2827 . . . . . . . . . 10 (𝑉 = {𝐴, 𝐵, 𝐶} → (𝑣𝑉𝑣 ∈ {𝐴, 𝐵, 𝐶}))
4341, 42syl 17 . . . . . . . . 9 (𝜑 → (𝑣𝑉𝑣 ∈ {𝐴, 𝐵, 𝐶}))
4443adantr 480 . . . . . . . 8 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣𝑉𝑣 ∈ {𝐴, 𝐵, 𝐶}))
45 vex 3426 . . . . . . . . . . 11 𝑣 ∈ V
4645eltp 4621 . . . . . . . . . 10 (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑣 = 𝐴𝑣 = 𝐵𝑣 = 𝐶))
4711usgredgne 27476 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ {𝐴, 𝑣} ∈ 𝐸) → 𝐴𝑣)
48 df-ne 2943 . . . . . . . . . . . . . . . . 17 (𝐴𝑣 ↔ ¬ 𝐴 = 𝑣)
49 pm2.24 124 . . . . . . . . . . . . . . . . . . 19 (𝐴 = 𝑣 → (¬ 𝐴 = 𝑣 → (𝑣 = 𝐵𝑣 = 𝐶)))
5049eqcoms 2746 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐴 → (¬ 𝐴 = 𝑣 → (𝑣 = 𝐵𝑣 = 𝐶)))
5150com12 32 . . . . . . . . . . . . . . . . 17 𝐴 = 𝑣 → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶)))
5248, 51sylbi 216 . . . . . . . . . . . . . . . 16 (𝐴𝑣 → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶)))
5347, 52syl 17 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ {𝐴, 𝑣} ∈ 𝐸) → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶)))
5453ex 412 . . . . . . . . . . . . . 14 (𝐺 ∈ USGraph → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶))))
5510, 54syl 17 . . . . . . . . . . . . 13 (𝜑 → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶))))
5655adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐴 → (𝑣 = 𝐵𝑣 = 𝐶))))
5756com3r 87 . . . . . . . . . . 11 (𝑣 = 𝐴 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
58 orc 863 . . . . . . . . . . . 12 (𝑣 = 𝐵 → (𝑣 = 𝐵𝑣 = 𝐶))
59582a1d 26 . . . . . . . . . . 11 (𝑣 = 𝐵 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
60 olc 864 . . . . . . . . . . . 12 (𝑣 = 𝐶 → (𝑣 = 𝐵𝑣 = 𝐶))
61602a1d 26 . . . . . . . . . . 11 (𝑣 = 𝐶 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
6257, 59, 613jaoi 1425 . . . . . . . . . 10 ((𝑣 = 𝐴𝑣 = 𝐵𝑣 = 𝐶) → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
6346, 62sylbi 216 . . . . . . . . 9 (𝑣 ∈ {𝐴, 𝐵, 𝐶} → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
6463com12 32 . . . . . . . 8 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 ∈ {𝐴, 𝐵, 𝐶} → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
6544, 64sylbid 239 . . . . . . 7 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣𝑉 → ({𝐴, 𝑣} ∈ 𝐸 → (𝑣 = 𝐵𝑣 = 𝐶))))
6665impd 410 . . . . . 6 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ((𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸) → (𝑣 = 𝐵𝑣 = 𝐶)))
67 eqid 2738 . . . . . . . . . . . . . . . . . 18 𝐵 = 𝐵
68673mix2i 1332 . . . . . . . . . . . . . . . . 17 (𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶)
691simp2d 1141 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵𝑌)
70 eltpg 4618 . . . . . . . . . . . . . . . . . 18 (𝐵𝑌 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶)))
7169, 70syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶)))
7268, 71mpbiri 257 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ {𝐴, 𝐵, 𝐶})
7372adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑣 = 𝐵) → 𝐵 ∈ {𝐴, 𝐵, 𝐶})
74 eleq1 2826 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝐵 → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐵 ∈ {𝐴, 𝐵, 𝐶}))
7574bicomd 222 . . . . . . . . . . . . . . . 16 (𝑣 = 𝐵 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶}))
7675adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑣 = 𝐵) → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶}))
7773, 76mpbid 231 . . . . . . . . . . . . . 14 ((𝜑𝑣 = 𝐵) → 𝑣 ∈ {𝐴, 𝐵, 𝐶})
7842bicomd 222 . . . . . . . . . . . . . . . 16 (𝑉 = {𝐴, 𝐵, 𝐶} → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣𝑉))
7941, 78syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣𝑉))
8079adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑣 = 𝐵) → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣𝑉))
8177, 80mpbid 231 . . . . . . . . . . . . 13 ((𝜑𝑣 = 𝐵) → 𝑣𝑉)
8281ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑣 = 𝐵𝑣𝑉))
8382adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐵𝑣𝑉))
8483impcom 407 . . . . . . . . . 10 ((𝑣 = 𝐵 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → 𝑣𝑉)
85 preq2 4667 . . . . . . . . . . . . . . 15 (𝐵 = 𝑣 → {𝐴, 𝐵} = {𝐴, 𝑣})
8685eleq1d 2823 . . . . . . . . . . . . . 14 (𝐵 = 𝑣 → ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸))
8786eqcoms 2746 . . . . . . . . . . . . 13 (𝑣 = 𝐵 → ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸))
8887biimpcd 248 . . . . . . . . . . . 12 ({𝐴, 𝐵} ∈ 𝐸 → (𝑣 = 𝐵 → {𝐴, 𝑣} ∈ 𝐸))
8988ad2antrl 724 . . . . . . . . . . 11 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐵 → {𝐴, 𝑣} ∈ 𝐸))
9089impcom 407 . . . . . . . . . 10 ((𝑣 = 𝐵 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → {𝐴, 𝑣} ∈ 𝐸)
9184, 90jca 511 . . . . . . . . 9 ((𝑣 = 𝐵 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸))
9291ex 412 . . . . . . . 8 (𝑣 = 𝐵 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)))
93 tpid3g 4705 . . . . . . . . . . . . . . . . . 18 (𝐶𝑍𝐶 ∈ {𝐴, 𝐵, 𝐶})
94933ad2ant3 1133 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
951, 94syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ {𝐴, 𝐵, 𝐶})
9695adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑣 = 𝐶) → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
97 eleq1 2826 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝐶 → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
9897bicomd 222 . . . . . . . . . . . . . . . 16 (𝑣 = 𝐶 → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶}))
9998adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑣 = 𝐶) → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣 ∈ {𝐴, 𝐵, 𝐶}))
10096, 99mpbid 231 . . . . . . . . . . . . . 14 ((𝜑𝑣 = 𝐶) → 𝑣 ∈ {𝐴, 𝐵, 𝐶})
10179adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑣 = 𝐶) → (𝑣 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝑣𝑉))
102100, 101mpbid 231 . . . . . . . . . . . . 13 ((𝜑𝑣 = 𝐶) → 𝑣𝑉)
103102ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑣 = 𝐶𝑣𝑉))
104103adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐶𝑣𝑉))
105104impcom 407 . . . . . . . . . 10 ((𝑣 = 𝐶 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → 𝑣𝑉)
106 preq2 4667 . . . . . . . . . . . . . . 15 (𝐶 = 𝑣 → {𝐴, 𝐶} = {𝐴, 𝑣})
107106eleq1d 2823 . . . . . . . . . . . . . 14 (𝐶 = 𝑣 → ({𝐴, 𝐶} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸))
108107eqcoms 2746 . . . . . . . . . . . . 13 (𝑣 = 𝐶 → ({𝐴, 𝐶} ∈ 𝐸 ↔ {𝐴, 𝑣} ∈ 𝐸))
109108biimpcd 248 . . . . . . . . . . . 12 ({𝐴, 𝐶} ∈ 𝐸 → (𝑣 = 𝐶 → {𝐴, 𝑣} ∈ 𝐸))
110109ad2antll 725 . . . . . . . . . . 11 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣 = 𝐶 → {𝐴, 𝑣} ∈ 𝐸))
111110impcom 407 . . . . . . . . . 10 ((𝑣 = 𝐶 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → {𝐴, 𝑣} ∈ 𝐸)
112105, 111jca 511 . . . . . . . . 9 ((𝑣 = 𝐶 ∧ (𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸))
113112ex 412 . . . . . . . 8 (𝑣 = 𝐶 → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)))
11492, 113jaoi 853 . . . . . . 7 ((𝑣 = 𝐵𝑣 = 𝐶) → ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)))
115114com12 32 . . . . . 6 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ((𝑣 = 𝐵𝑣 = 𝐶) → (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)))
11666, 115impbid 211 . . . . 5 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → ((𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸) ↔ (𝑣 = 𝐵𝑣 = 𝐶)))
117116abbidv 2808 . . . 4 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → {𝑣 ∣ (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)} = {𝑣 ∣ (𝑣 = 𝐵𝑣 = 𝐶)})
118 df-rab 3072 . . . 4 {𝑣𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸} = {𝑣 ∣ (𝑣𝑉 ∧ {𝐴, 𝑣} ∈ 𝐸)}
119 dfpr2 4577 . . . 4 {𝐵, 𝐶} = {𝑣 ∣ (𝑣 = 𝐵𝑣 = 𝐶)}
120117, 118, 1193eqtr4g 2804 . . 3 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → {𝑣𝑉 ∣ {𝐴, 𝑣} ∈ 𝐸} = {𝐵, 𝐶})
12140, 120eqtrd 2778 . 2 ((𝜑 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) → (𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶})
12236, 121impbida 797 1 (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3o 1084  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wne 2942  {crab 3067  {cpr 4560  {ctp 4562  cfv 6418  (class class class)co 7255  Vtxcvtx 27269  Edgcedg 27320  USGraphcusgr 27422   NeighbVtx cnbgr 27602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-edg 27321  df-upgr 27355  df-umgr 27356  df-usgr 27424  df-nbgr 27603
This theorem is referenced by:  nb3grpr  27652  nb3grpr2  27653  nb3gr2nb  27654
  Copyright terms: Public domain W3C validator