Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lrrecse | Structured version Visualization version GIF version |
Description: Next, we show that 𝑅 is set-like over No . (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
lrrec.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
Ref | Expression |
---|---|
lrrecse | ⊢ 𝑅 Se No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-se 5536 | . 2 ⊢ (𝑅 Se No ↔ ∀𝑎 ∈ No {𝑏 ∈ No ∣ 𝑏𝑅𝑎} ∈ V) | |
2 | lrrec.1 | . . . . . 6 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
3 | 2 | lrrecval 34023 | . . . . 5 ⊢ ((𝑏 ∈ No ∧ 𝑎 ∈ No ) → (𝑏𝑅𝑎 ↔ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))) |
4 | 3 | ancoms 458 | . . . 4 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ) → (𝑏𝑅𝑎 ↔ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))) |
5 | 4 | rabbidva 3402 | . . 3 ⊢ (𝑎 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝑎} = {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))}) |
6 | dfrab2 4241 | . . . . 5 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ({𝑏 ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No ) | |
7 | abid2 2881 | . . . . . 6 ⊢ {𝑏 ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = (( L ‘𝑎) ∪ ( R ‘𝑎)) | |
8 | 7 | ineq1i 4139 | . . . . 5 ⊢ ({𝑏 ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No ) = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) |
9 | 6, 8 | eqtri 2766 | . . . 4 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) |
10 | fvex 6769 | . . . . . 6 ⊢ ( L ‘𝑎) ∈ V | |
11 | fvex 6769 | . . . . . 6 ⊢ ( R ‘𝑎) ∈ V | |
12 | 10, 11 | unex 7574 | . . . . 5 ⊢ (( L ‘𝑎) ∪ ( R ‘𝑎)) ∈ V |
13 | 12 | inex1 5236 | . . . 4 ⊢ ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) ∈ V |
14 | 9, 13 | eqeltri 2835 | . . 3 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∈ V |
15 | 5, 14 | eqeltrdi 2847 | . 2 ⊢ (𝑎 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝑎} ∈ V) |
16 | 1, 15 | mprgbir 3078 | 1 ⊢ 𝑅 Se No |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 {crab 3067 Vcvv 3422 ∪ cun 3881 ∩ cin 3882 class class class wbr 5070 {copab 5132 Se wse 5533 ‘cfv 6418 No csur 33770 L cleft 33956 R cright 33957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-se 5536 df-iota 6376 df-fv 6426 |
This theorem is referenced by: noinds 34029 norecfn 34030 norecov 34031 noxpordse 34036 no2indslem 34038 no3inds 34042 |
Copyright terms: Public domain | W3C validator |