Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lrrecse Structured version   Visualization version   GIF version

Theorem lrrecse 34026
Description: Next, we show that 𝑅 is set-like over No . (Contributed by Scott Fenton, 19-Aug-2024.)
Hypothesis
Ref Expression
lrrec.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
Assertion
Ref Expression
lrrecse 𝑅 Se No
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem lrrecse
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-se 5536 . 2 (𝑅 Se No ↔ ∀𝑎 No {𝑏 No 𝑏𝑅𝑎} ∈ V)
2 lrrec.1 . . . . . 6 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
32lrrecval 34023 . . . . 5 ((𝑏 No 𝑎 No ) → (𝑏𝑅𝑎𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))))
43ancoms 458 . . . 4 ((𝑎 No 𝑏 No ) → (𝑏𝑅𝑎𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))))
54rabbidva 3402 . . 3 (𝑎 No → {𝑏 No 𝑏𝑅𝑎} = {𝑏 No 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))})
6 dfrab2 4241 . . . . 5 {𝑏 No 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ({𝑏𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No )
7 abid2 2881 . . . . . 6 {𝑏𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = (( L ‘𝑎) ∪ ( R ‘𝑎))
87ineq1i 4139 . . . . 5 ({𝑏𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No ) = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No )
96, 8eqtri 2766 . . . 4 {𝑏 No 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No )
10 fvex 6769 . . . . . 6 ( L ‘𝑎) ∈ V
11 fvex 6769 . . . . . 6 ( R ‘𝑎) ∈ V
1210, 11unex 7574 . . . . 5 (( L ‘𝑎) ∪ ( R ‘𝑎)) ∈ V
1312inex1 5236 . . . 4 ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) ∈ V
149, 13eqeltri 2835 . . 3 {𝑏 No 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∈ V
155, 14eqeltrdi 2847 . 2 (𝑎 No → {𝑏 No 𝑏𝑅𝑎} ∈ V)
161, 15mprgbir 3078 1 𝑅 Se No
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108  {cab 2715  {crab 3067  Vcvv 3422  cun 3881  cin 3882   class class class wbr 5070  {copab 5132   Se wse 5533  cfv 6418   No csur 33770   L cleft 33956   R cright 33957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-se 5536  df-iota 6376  df-fv 6426
This theorem is referenced by:  noinds  34029  norecfn  34030  norecov  34031  noxpordse  34036  no2indslem  34038  no3inds  34042
  Copyright terms: Public domain W3C validator