MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lrrecse Structured version   Visualization version   GIF version

Theorem lrrecse 27995
Description: Next, we show that 𝑅 is set-like over No . (Contributed by Scott Fenton, 19-Aug-2024.)
Hypothesis
Ref Expression
lrrec.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
Assertion
Ref Expression
lrrecse 𝑅 Se No
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem lrrecse
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-se 5653 . 2 (𝑅 Se No ↔ ∀𝑎 No {𝑏 No 𝑏𝑅𝑎} ∈ V)
2 lrrec.1 . . . . . 6 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
32lrrecval 27992 . . . . 5 ((𝑏 No 𝑎 No ) → (𝑏𝑅𝑎𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))))
43ancoms 458 . . . 4 ((𝑎 No 𝑏 No ) → (𝑏𝑅𝑎𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))))
54rabbidva 3450 . . 3 (𝑎 No → {𝑏 No 𝑏𝑅𝑎} = {𝑏 No 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))})
6 dfrab2 4339 . . . . 5 {𝑏 No 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ({𝑏𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No )
7 abid2 2882 . . . . . 6 {𝑏𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = (( L ‘𝑎) ∪ ( R ‘𝑎))
87ineq1i 4237 . . . . 5 ({𝑏𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No ) = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No )
96, 8eqtri 2768 . . . 4 {𝑏 No 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No )
10 fvex 6935 . . . . . 6 ( L ‘𝑎) ∈ V
11 fvex 6935 . . . . . 6 ( R ‘𝑎) ∈ V
1210, 11unex 7781 . . . . 5 (( L ‘𝑎) ∪ ( R ‘𝑎)) ∈ V
1312inex1 5335 . . . 4 ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) ∈ V
149, 13eqeltri 2840 . . 3 {𝑏 No 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∈ V
155, 14eqeltrdi 2852 . 2 (𝑎 No → {𝑏 No 𝑏𝑅𝑎} ∈ V)
161, 15mprgbir 3074 1 𝑅 Se No
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  {cab 2717  {crab 3443  Vcvv 3488  cun 3974  cin 3975   class class class wbr 5166  {copab 5228   Se wse 5650  cfv 6575   No csur 27704   L cleft 27904   R cright 27905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-se 5653  df-iota 6527  df-fv 6583
This theorem is referenced by:  noinds  27998  norecfn  27999  norecov  28000  noxpordse  28005  no2indslem  28007  no3inds  28011
  Copyright terms: Public domain W3C validator