![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lrrecse | Structured version Visualization version GIF version |
Description: Next, we show that 𝑅 is set-like over No . (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
lrrec.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
Ref | Expression |
---|---|
lrrecse | ⊢ 𝑅 Se No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-se 5653 | . 2 ⊢ (𝑅 Se No ↔ ∀𝑎 ∈ No {𝑏 ∈ No ∣ 𝑏𝑅𝑎} ∈ V) | |
2 | lrrec.1 | . . . . . 6 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
3 | 2 | lrrecval 27992 | . . . . 5 ⊢ ((𝑏 ∈ No ∧ 𝑎 ∈ No ) → (𝑏𝑅𝑎 ↔ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))) |
4 | 3 | ancoms 458 | . . . 4 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ) → (𝑏𝑅𝑎 ↔ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))) |
5 | 4 | rabbidva 3450 | . . 3 ⊢ (𝑎 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝑎} = {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))}) |
6 | dfrab2 4339 | . . . . 5 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ({𝑏 ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No ) | |
7 | abid2 2882 | . . . . . 6 ⊢ {𝑏 ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = (( L ‘𝑎) ∪ ( R ‘𝑎)) | |
8 | 7 | ineq1i 4237 | . . . . 5 ⊢ ({𝑏 ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No ) = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) |
9 | 6, 8 | eqtri 2768 | . . . 4 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) |
10 | fvex 6935 | . . . . . 6 ⊢ ( L ‘𝑎) ∈ V | |
11 | fvex 6935 | . . . . . 6 ⊢ ( R ‘𝑎) ∈ V | |
12 | 10, 11 | unex 7781 | . . . . 5 ⊢ (( L ‘𝑎) ∪ ( R ‘𝑎)) ∈ V |
13 | 12 | inex1 5335 | . . . 4 ⊢ ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) ∈ V |
14 | 9, 13 | eqeltri 2840 | . . 3 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∈ V |
15 | 5, 14 | eqeltrdi 2852 | . 2 ⊢ (𝑎 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝑎} ∈ V) |
16 | 1, 15 | mprgbir 3074 | 1 ⊢ 𝑅 Se No |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 {crab 3443 Vcvv 3488 ∪ cun 3974 ∩ cin 3975 class class class wbr 5166 {copab 5228 Se wse 5650 ‘cfv 6575 No csur 27704 L cleft 27904 R cright 27905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-se 5653 df-iota 6527 df-fv 6583 |
This theorem is referenced by: noinds 27998 norecfn 27999 norecov 28000 noxpordse 28005 no2indslem 28007 no3inds 28011 |
Copyright terms: Public domain | W3C validator |