Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lrrecse Structured version   Visualization version   GIF version

Theorem lrrecse 33682
Description: Next, we show that 𝑅 is set-like over No . (Contributed by Scott Fenton, 19-Aug-2024.)
Hypothesis
Ref Expression
lrrec.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
Assertion
Ref Expression
lrrecse 𝑅 Se No
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem lrrecse
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-se 5488 . 2 (𝑅 Se No ↔ ∀𝑎 No {𝑏 No 𝑏𝑅𝑎} ∈ V)
2 lrrec.1 . . . . . 6 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
32lrrecval 33679 . . . . 5 ((𝑏 No 𝑎 No ) → (𝑏𝑅𝑎𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))))
43ancoms 462 . . . 4 ((𝑎 No 𝑏 No ) → (𝑏𝑅𝑎𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))))
54rabbidva 3390 . . 3 (𝑎 No → {𝑏 No 𝑏𝑅𝑎} = {𝑏 No 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))})
6 dfrab2 4215 . . . . 5 {𝑏 No 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ({𝑏𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No )
7 abid2 2894 . . . . . 6 {𝑏𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = (( L ‘𝑎) ∪ ( R ‘𝑎))
87ineq1i 4115 . . . . 5 ({𝑏𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No ) = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No )
96, 8eqtri 2781 . . . 4 {𝑏 No 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No )
10 fvex 6676 . . . . . 6 ( L ‘𝑎) ∈ V
11 fvex 6676 . . . . . 6 ( R ‘𝑎) ∈ V
1210, 11unex 7473 . . . . 5 (( L ‘𝑎) ∪ ( R ‘𝑎)) ∈ V
1312inex1 5191 . . . 4 ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) ∈ V
149, 13eqeltri 2848 . . 3 {𝑏 No 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∈ V
155, 14eqeltrdi 2860 . 2 (𝑎 No → {𝑏 No 𝑏𝑅𝑎} ∈ V)
161, 15mprgbir 3085 1 𝑅 Se No
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1538  wcel 2111  {cab 2735  {crab 3074  Vcvv 3409  cun 3858  cin 3859   class class class wbr 5036  {copab 5098   Se wse 5485  cfv 6340   No csur 33441   L cleft 33624   R cright 33625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-se 5488  df-iota 6299  df-fv 6348
This theorem is referenced by:  noinds  33685  norecfn  33686  norecov  33687  noxpordse  33692  no2indslem  33694  no3indslem  33698
  Copyright terms: Public domain W3C validator