| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lrrecse | Structured version Visualization version GIF version | ||
| Description: Next, we show that 𝑅 is set-like over No . (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| lrrec.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
| Ref | Expression |
|---|---|
| lrrecse | ⊢ 𝑅 Se No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-se 5592 | . 2 ⊢ (𝑅 Se No ↔ ∀𝑎 ∈ No {𝑏 ∈ No ∣ 𝑏𝑅𝑎} ∈ V) | |
| 2 | lrrec.1 | . . . . . 6 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
| 3 | 2 | lrrecval 27846 | . . . . 5 ⊢ ((𝑏 ∈ No ∧ 𝑎 ∈ No ) → (𝑏𝑅𝑎 ↔ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))) |
| 4 | 3 | ancoms 458 | . . . 4 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ) → (𝑏𝑅𝑎 ↔ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))) |
| 5 | 4 | rabbidva 3412 | . . 3 ⊢ (𝑎 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝑎} = {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))}) |
| 6 | dfrab2 4283 | . . . . 5 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ({𝑏 ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No ) | |
| 7 | abid2 2865 | . . . . . 6 ⊢ {𝑏 ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = (( L ‘𝑎) ∪ ( R ‘𝑎)) | |
| 8 | 7 | ineq1i 4179 | . . . . 5 ⊢ ({𝑏 ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No ) = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) |
| 9 | 6, 8 | eqtri 2752 | . . . 4 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) |
| 10 | fvex 6871 | . . . . . 6 ⊢ ( L ‘𝑎) ∈ V | |
| 11 | fvex 6871 | . . . . . 6 ⊢ ( R ‘𝑎) ∈ V | |
| 12 | 10, 11 | unex 7720 | . . . . 5 ⊢ (( L ‘𝑎) ∪ ( R ‘𝑎)) ∈ V |
| 13 | 12 | inex1 5272 | . . . 4 ⊢ ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) ∈ V |
| 14 | 9, 13 | eqeltri 2824 | . . 3 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∈ V |
| 15 | 5, 14 | eqeltrdi 2836 | . 2 ⊢ (𝑎 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝑎} ∈ V) |
| 16 | 1, 15 | mprgbir 3051 | 1 ⊢ 𝑅 Se No |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3405 Vcvv 3447 ∪ cun 3912 ∩ cin 3913 class class class wbr 5107 {copab 5169 Se wse 5589 ‘cfv 6511 No csur 27551 L cleft 27753 R cright 27754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-se 5592 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: noinds 27852 norecfn 27853 norecov 27854 noxpordse 27859 no2indslem 27861 no3inds 27865 |
| Copyright terms: Public domain | W3C validator |