| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lrrecse | Structured version Visualization version GIF version | ||
| Description: Next, we show that 𝑅 is set-like over No . (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| lrrec.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
| Ref | Expression |
|---|---|
| lrrecse | ⊢ 𝑅 Se No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-se 5618 | . 2 ⊢ (𝑅 Se No ↔ ∀𝑎 ∈ No {𝑏 ∈ No ∣ 𝑏𝑅𝑎} ∈ V) | |
| 2 | lrrec.1 | . . . . . 6 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
| 3 | 2 | lrrecval 27907 | . . . . 5 ⊢ ((𝑏 ∈ No ∧ 𝑎 ∈ No ) → (𝑏𝑅𝑎 ↔ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))) |
| 4 | 3 | ancoms 458 | . . . 4 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ) → (𝑏𝑅𝑎 ↔ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))) |
| 5 | 4 | rabbidva 3426 | . . 3 ⊢ (𝑎 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝑎} = {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))}) |
| 6 | dfrab2 4300 | . . . . 5 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ({𝑏 ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No ) | |
| 7 | abid2 2871 | . . . . . 6 ⊢ {𝑏 ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = (( L ‘𝑎) ∪ ( R ‘𝑎)) | |
| 8 | 7 | ineq1i 4196 | . . . . 5 ⊢ ({𝑏 ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No ) = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) |
| 9 | 6, 8 | eqtri 2757 | . . . 4 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) |
| 10 | fvex 6898 | . . . . . 6 ⊢ ( L ‘𝑎) ∈ V | |
| 11 | fvex 6898 | . . . . . 6 ⊢ ( R ‘𝑎) ∈ V | |
| 12 | 10, 11 | unex 7745 | . . . . 5 ⊢ (( L ‘𝑎) ∪ ( R ‘𝑎)) ∈ V |
| 13 | 12 | inex1 5297 | . . . 4 ⊢ ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) ∈ V |
| 14 | 9, 13 | eqeltri 2829 | . . 3 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∈ V |
| 15 | 5, 14 | eqeltrdi 2841 | . 2 ⊢ (𝑎 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝑎} ∈ V) |
| 16 | 1, 15 | mprgbir 3057 | 1 ⊢ 𝑅 Se No |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 {cab 2712 {crab 3419 Vcvv 3463 ∪ cun 3929 ∩ cin 3930 class class class wbr 5123 {copab 5185 Se wse 5615 ‘cfv 6540 No csur 27619 L cleft 27819 R cright 27820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-se 5618 df-iota 6493 df-fv 6548 |
| This theorem is referenced by: noinds 27913 norecfn 27914 norecov 27915 noxpordse 27920 no2indslem 27922 no3inds 27926 |
| Copyright terms: Public domain | W3C validator |