Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lrrecse | Structured version Visualization version GIF version |
Description: Next, we show that 𝑅 is set-like over No . (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
lrrec.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
Ref | Expression |
---|---|
lrrecse | ⊢ 𝑅 Se No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-se 5484 | . 2 ⊢ (𝑅 Se No ↔ ∀𝑎 ∈ No {𝑏 ∈ No ∣ 𝑏𝑅𝑎} ∈ V) | |
2 | lrrec.1 | . . . . . 6 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
3 | 2 | lrrecval 33739 | . . . . 5 ⊢ ((𝑏 ∈ No ∧ 𝑎 ∈ No ) → (𝑏𝑅𝑎 ↔ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))) |
4 | 3 | ancoms 462 | . . . 4 ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ) → (𝑏𝑅𝑎 ↔ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))) |
5 | 4 | rabbidva 3379 | . . 3 ⊢ (𝑎 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝑎} = {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))}) |
6 | dfrab2 4199 | . . . . 5 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ({𝑏 ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No ) | |
7 | abid2 2874 | . . . . . 6 ⊢ {𝑏 ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = (( L ‘𝑎) ∪ ( R ‘𝑎)) | |
8 | 7 | ineq1i 4099 | . . . . 5 ⊢ ({𝑏 ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No ) = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) |
9 | 6, 8 | eqtri 2761 | . . . 4 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) |
10 | fvex 6687 | . . . . . 6 ⊢ ( L ‘𝑎) ∈ V | |
11 | fvex 6687 | . . . . . 6 ⊢ ( R ‘𝑎) ∈ V | |
12 | 10, 11 | unex 7487 | . . . . 5 ⊢ (( L ‘𝑎) ∪ ( R ‘𝑎)) ∈ V |
13 | 12 | inex1 5185 | . . . 4 ⊢ ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) ∈ V |
14 | 9, 13 | eqeltri 2829 | . . 3 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∈ V |
15 | 5, 14 | eqeltrdi 2841 | . 2 ⊢ (𝑎 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝑎} ∈ V) |
16 | 1, 15 | mprgbir 3068 | 1 ⊢ 𝑅 Se No |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1542 ∈ wcel 2114 {cab 2716 {crab 3057 Vcvv 3398 ∪ cun 3841 ∩ cin 3842 class class class wbr 5030 {copab 5092 Se wse 5481 ‘cfv 6339 No csur 33486 L cleft 33672 R cright 33673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-se 5484 df-iota 6297 df-fv 6347 |
This theorem is referenced by: noinds 33745 norecfn 33746 norecov 33747 noxpordse 33752 no2indslem 33754 no3inds 33758 |
Copyright terms: Public domain | W3C validator |