MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lrrecse Structured version   Visualization version   GIF version

Theorem lrrecse 28001
Description: Next, we show that 𝑅 is set-like over No . (Contributed by Scott Fenton, 19-Aug-2024.)
Hypothesis
Ref Expression
lrrec.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
Assertion
Ref Expression
lrrecse 𝑅 Se No
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem lrrecse
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-se 5646 . 2 (𝑅 Se No ↔ ∀𝑎 No {𝑏 No 𝑏𝑅𝑎} ∈ V)
2 lrrec.1 . . . . . 6 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
32lrrecval 27998 . . . . 5 ((𝑏 No 𝑎 No ) → (𝑏𝑅𝑎𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))))
43ancoms 458 . . . 4 ((𝑎 No 𝑏 No ) → (𝑏𝑅𝑎𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))))
54rabbidva 3443 . . 3 (𝑎 No → {𝑏 No 𝑏𝑅𝑎} = {𝑏 No 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))})
6 dfrab2 4329 . . . . 5 {𝑏 No 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ({𝑏𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No )
7 abid2 2879 . . . . . 6 {𝑏𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = (( L ‘𝑎) ∪ ( R ‘𝑎))
87ineq1i 4227 . . . . 5 ({𝑏𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∩ No ) = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No )
96, 8eqtri 2765 . . . 4 {𝑏 No 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} = ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No )
10 fvex 6927 . . . . . 6 ( L ‘𝑎) ∈ V
11 fvex 6927 . . . . . 6 ( R ‘𝑎) ∈ V
1210, 11unex 7770 . . . . 5 (( L ‘𝑎) ∪ ( R ‘𝑎)) ∈ V
1312inex1 5326 . . . 4 ((( L ‘𝑎) ∪ ( R ‘𝑎)) ∩ No ) ∈ V
149, 13eqeltri 2837 . . 3 {𝑏 No 𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))} ∈ V
155, 14eqeltrdi 2849 . 2 (𝑎 No → {𝑏 No 𝑏𝑅𝑎} ∈ V)
161, 15mprgbir 3068 1 𝑅 Se No
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wcel 2108  {cab 2714  {crab 3436  Vcvv 3481  cun 3964  cin 3965   class class class wbr 5151  {copab 5213   Se wse 5643  cfv 6569   No csur 27710   L cleft 27910   R cright 27911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-se 5646  df-iota 6522  df-fv 6577
This theorem is referenced by:  noinds  28004  norecfn  28005  norecov  28006  noxpordse  28011  no2indslem  28013  no3inds  28017
  Copyright terms: Public domain W3C validator