| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lrrecpred | Structured version Visualization version GIF version | ||
| Description: Finally, we calculate the value of the predecessor class over 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| lrrec.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
| Ref | Expression |
|---|---|
| lrrecpred | ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpred3g 6260 | . 2 ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = {𝑏 ∈ No ∣ 𝑏𝑅𝐴}) | |
| 2 | lrrec.1 | . . . . . 6 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
| 3 | 2 | lrrecval 27880 | . . . . 5 ⊢ ((𝑏 ∈ No ∧ 𝐴 ∈ No ) → (𝑏𝑅𝐴 ↔ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))) |
| 4 | 3 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝑏 ∈ No ) → (𝑏𝑅𝐴 ↔ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))) |
| 5 | 4 | rabbidva 3401 | . . 3 ⊢ (𝐴 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝐴} = {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))}) |
| 6 | dfrab2 4270 | . . . 4 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = ({𝑏 ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} ∩ No ) | |
| 7 | abid2 2868 | . . . . 5 ⊢ {𝑏 ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = (( L ‘𝐴) ∪ ( R ‘𝐴)) | |
| 8 | 7 | ineq1i 4166 | . . . 4 ⊢ ({𝑏 ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} ∩ No ) = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) |
| 9 | 6, 8 | eqtri 2754 | . . 3 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) |
| 10 | 5, 9 | eqtrdi 2782 | . 2 ⊢ (𝐴 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝐴} = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No )) |
| 11 | leftssno 27824 | . . . . 5 ⊢ ( L ‘𝐴) ⊆ No | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ No → ( L ‘𝐴) ⊆ No ) |
| 13 | rightssno 27825 | . . . . 5 ⊢ ( R ‘𝐴) ⊆ No | |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ⊆ No ) |
| 15 | 12, 14 | unssd 4142 | . . 3 ⊢ (𝐴 ∈ No → (( L ‘𝐴) ∪ ( R ‘𝐴)) ⊆ No ) |
| 16 | dfss2 3920 | . . 3 ⊢ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ⊆ No ↔ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) = (( L ‘𝐴) ∪ ( R ‘𝐴))) | |
| 17 | 15, 16 | sylib 218 | . 2 ⊢ (𝐴 ∈ No → ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
| 18 | 1, 10, 17 | 3eqtrd 2770 | 1 ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 {crab 3395 ∪ cun 3900 ∩ cin 3901 ⊆ wss 3902 class class class wbr 5091 {copab 5153 Predcpred 6247 ‘cfv 6481 No csur 27576 L cleft 27784 R cright 27785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-no 27579 df-slt 27580 df-bday 27581 df-sslt 27719 df-scut 27721 df-made 27786 df-old 27787 df-left 27789 df-right 27790 |
| This theorem is referenced by: noinds 27886 norecov 27888 noxpordpred 27894 no2indslem 27895 no3inds 27899 |
| Copyright terms: Public domain | W3C validator |