![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lrrecpred | Structured version Visualization version GIF version |
Description: Finally, we calculate the value of the predecessor class over 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
lrrec.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
Ref | Expression |
---|---|
lrrecpred | ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpred3g 6270 | . 2 ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = {𝑏 ∈ No ∣ 𝑏𝑅𝐴}) | |
2 | lrrec.1 | . . . . . 6 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
3 | 2 | lrrecval 27294 | . . . . 5 ⊢ ((𝑏 ∈ No ∧ 𝐴 ∈ No ) → (𝑏𝑅𝐴 ↔ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))) |
4 | 3 | ancoms 459 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝑏 ∈ No ) → (𝑏𝑅𝐴 ↔ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))) |
5 | 4 | rabbidva 3412 | . . 3 ⊢ (𝐴 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝐴} = {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))}) |
6 | dfrab2 4275 | . . . 4 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = ({𝑏 ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} ∩ No ) | |
7 | abid2 2870 | . . . . 5 ⊢ {𝑏 ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = (( L ‘𝐴) ∪ ( R ‘𝐴)) | |
8 | 7 | ineq1i 4173 | . . . 4 ⊢ ({𝑏 ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} ∩ No ) = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) |
9 | 6, 8 | eqtri 2759 | . . 3 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) |
10 | 5, 9 | eqtrdi 2787 | . 2 ⊢ (𝐴 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝐴} = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No )) |
11 | leftssno 27253 | . . . . 5 ⊢ ( L ‘𝐴) ⊆ No | |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ No → ( L ‘𝐴) ⊆ No ) |
13 | rightssno 27254 | . . . . 5 ⊢ ( R ‘𝐴) ⊆ No | |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ⊆ No ) |
15 | 12, 14 | unssd 4151 | . . 3 ⊢ (𝐴 ∈ No → (( L ‘𝐴) ∪ ( R ‘𝐴)) ⊆ No ) |
16 | df-ss 3930 | . . 3 ⊢ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ⊆ No ↔ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) = (( L ‘𝐴) ∪ ( R ‘𝐴))) | |
17 | 15, 16 | sylib 217 | . 2 ⊢ (𝐴 ∈ No → ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
18 | 1, 10, 17 | 3eqtrd 2775 | 1 ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {cab 2708 {crab 3405 ∪ cun 3911 ∩ cin 3912 ⊆ wss 3913 class class class wbr 5110 {copab 5172 Predcpred 6257 ‘cfv 6501 No csur 27025 L cleft 27218 R cright 27219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3448 df-sbc 3743 df-csb 3859 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-pss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-1o 8417 df-2o 8418 df-no 27028 df-slt 27029 df-bday 27030 df-sslt 27164 df-scut 27166 df-made 27220 df-old 27221 df-left 27223 df-right 27224 |
This theorem is referenced by: noinds 27300 norecov 27302 noxpordpred 27308 no2indslem 27309 no3inds 27313 |
Copyright terms: Public domain | W3C validator |