MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lrrecpred Structured version   Visualization version   GIF version

Theorem lrrecpred 27851
Description: Finally, we calculate the value of the predecessor class over 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypothesis
Ref Expression
lrrec.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
Assertion
Ref Expression
lrrecpred (𝐴 No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem lrrecpred
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 dfpred3g 6286 . 2 (𝐴 No → Pred(𝑅, No , 𝐴) = {𝑏 No 𝑏𝑅𝐴})
2 lrrec.1 . . . . . 6 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
32lrrecval 27846 . . . . 5 ((𝑏 No 𝐴 No ) → (𝑏𝑅𝐴𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))))
43ancoms 458 . . . 4 ((𝐴 No 𝑏 No ) → (𝑏𝑅𝐴𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))))
54rabbidva 3412 . . 3 (𝐴 No → {𝑏 No 𝑏𝑅𝐴} = {𝑏 No 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))})
6 dfrab2 4283 . . . 4 {𝑏 No 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = ({𝑏𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} ∩ No )
7 abid2 2865 . . . . 5 {𝑏𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = (( L ‘𝐴) ∪ ( R ‘𝐴))
87ineq1i 4179 . . . 4 ({𝑏𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} ∩ No ) = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No )
96, 8eqtri 2752 . . 3 {𝑏 No 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No )
105, 9eqtrdi 2780 . 2 (𝐴 No → {𝑏 No 𝑏𝑅𝐴} = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ))
11 leftssno 27792 . . . . 5 ( L ‘𝐴) ⊆ No
1211a1i 11 . . . 4 (𝐴 No → ( L ‘𝐴) ⊆ No )
13 rightssno 27793 . . . . 5 ( R ‘𝐴) ⊆ No
1413a1i 11 . . . 4 (𝐴 No → ( R ‘𝐴) ⊆ No )
1512, 14unssd 4155 . . 3 (𝐴 No → (( L ‘𝐴) ∪ ( R ‘𝐴)) ⊆ No )
16 dfss2 3932 . . 3 ((( L ‘𝐴) ∪ ( R ‘𝐴)) ⊆ No ↔ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
1715, 16sylib 218 . 2 (𝐴 No → ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
181, 10, 173eqtrd 2768 1 (𝐴 No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2707  {crab 3405  cun 3912  cin 3913  wss 3914   class class class wbr 5107  {copab 5169  Predcpred 6273  cfv 6511   No csur 27551   L cleft 27753   R cright 27754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556  df-sslt 27693  df-scut 27695  df-made 27755  df-old 27756  df-left 27758  df-right 27759
This theorem is referenced by:  noinds  27852  norecov  27854  noxpordpred  27860  no2indslem  27861  no3inds  27865
  Copyright terms: Public domain W3C validator