![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lrrecpred | Structured version Visualization version GIF version |
Description: Finally, we calculate the value of the predecessor class over 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
lrrec.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
Ref | Expression |
---|---|
lrrecpred | ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpred3g 6344 | . 2 ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = {𝑏 ∈ No ∣ 𝑏𝑅𝐴}) | |
2 | lrrec.1 | . . . . . 6 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
3 | 2 | lrrecval 27990 | . . . . 5 ⊢ ((𝑏 ∈ No ∧ 𝐴 ∈ No ) → (𝑏𝑅𝐴 ↔ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))) |
4 | 3 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝑏 ∈ No ) → (𝑏𝑅𝐴 ↔ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))) |
5 | 4 | rabbidva 3450 | . . 3 ⊢ (𝐴 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝐴} = {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))}) |
6 | dfrab2 4339 | . . . 4 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = ({𝑏 ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} ∩ No ) | |
7 | abid2 2882 | . . . . 5 ⊢ {𝑏 ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = (( L ‘𝐴) ∪ ( R ‘𝐴)) | |
8 | 7 | ineq1i 4237 | . . . 4 ⊢ ({𝑏 ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} ∩ No ) = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) |
9 | 6, 8 | eqtri 2768 | . . 3 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) |
10 | 5, 9 | eqtrdi 2796 | . 2 ⊢ (𝐴 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝐴} = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No )) |
11 | leftssno 27937 | . . . . 5 ⊢ ( L ‘𝐴) ⊆ No | |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ No → ( L ‘𝐴) ⊆ No ) |
13 | rightssno 27938 | . . . . 5 ⊢ ( R ‘𝐴) ⊆ No | |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ⊆ No ) |
15 | 12, 14 | unssd 4215 | . . 3 ⊢ (𝐴 ∈ No → (( L ‘𝐴) ∪ ( R ‘𝐴)) ⊆ No ) |
16 | dfss2 3994 | . . 3 ⊢ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ⊆ No ↔ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) = (( L ‘𝐴) ∪ ( R ‘𝐴))) | |
17 | 15, 16 | sylib 218 | . 2 ⊢ (𝐴 ∈ No → ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
18 | 1, 10, 17 | 3eqtrd 2784 | 1 ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 {crab 3443 ∪ cun 3974 ∩ cin 3975 ⊆ wss 3976 class class class wbr 5166 {copab 5228 Predcpred 6331 ‘cfv 6573 No csur 27702 L cleft 27902 R cright 27903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 df-sslt 27844 df-scut 27846 df-made 27904 df-old 27905 df-left 27907 df-right 27908 |
This theorem is referenced by: noinds 27996 norecov 27998 noxpordpred 28004 no2indslem 28005 no3inds 28009 |
Copyright terms: Public domain | W3C validator |