| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lrrecpred | Structured version Visualization version GIF version | ||
| Description: Finally, we calculate the value of the predecessor class over 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| lrrec.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} |
| Ref | Expression |
|---|---|
| lrrecpred | ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpred3g 6307 | . 2 ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = {𝑏 ∈ No ∣ 𝑏𝑅𝐴}) | |
| 2 | lrrec.1 | . . . . . 6 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} | |
| 3 | 2 | lrrecval 27903 | . . . . 5 ⊢ ((𝑏 ∈ No ∧ 𝐴 ∈ No ) → (𝑏𝑅𝐴 ↔ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))) |
| 4 | 3 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝑏 ∈ No ) → (𝑏𝑅𝐴 ↔ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))) |
| 5 | 4 | rabbidva 3427 | . . 3 ⊢ (𝐴 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝐴} = {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))}) |
| 6 | dfrab2 4300 | . . . 4 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = ({𝑏 ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} ∩ No ) | |
| 7 | abid2 2873 | . . . . 5 ⊢ {𝑏 ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = (( L ‘𝐴) ∪ ( R ‘𝐴)) | |
| 8 | 7 | ineq1i 4196 | . . . 4 ⊢ ({𝑏 ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} ∩ No ) = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) |
| 9 | 6, 8 | eqtri 2759 | . . 3 ⊢ {𝑏 ∈ No ∣ 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) |
| 10 | 5, 9 | eqtrdi 2787 | . 2 ⊢ (𝐴 ∈ No → {𝑏 ∈ No ∣ 𝑏𝑅𝐴} = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No )) |
| 11 | leftssno 27849 | . . . . 5 ⊢ ( L ‘𝐴) ⊆ No | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ No → ( L ‘𝐴) ⊆ No ) |
| 13 | rightssno 27850 | . . . . 5 ⊢ ( R ‘𝐴) ⊆ No | |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ⊆ No ) |
| 15 | 12, 14 | unssd 4172 | . . 3 ⊢ (𝐴 ∈ No → (( L ‘𝐴) ∪ ( R ‘𝐴)) ⊆ No ) |
| 16 | dfss2 3949 | . . 3 ⊢ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ⊆ No ↔ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) = (( L ‘𝐴) ∪ ( R ‘𝐴))) | |
| 17 | 15, 16 | sylib 218 | . 2 ⊢ (𝐴 ∈ No → ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
| 18 | 1, 10, 17 | 3eqtrd 2775 | 1 ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2714 {crab 3420 ∪ cun 3929 ∩ cin 3930 ⊆ wss 3931 class class class wbr 5124 {copab 5186 Predcpred 6294 ‘cfv 6536 No csur 27608 L cleft 27810 R cright 27811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-1o 8485 df-2o 8486 df-no 27611 df-slt 27612 df-bday 27613 df-sslt 27750 df-scut 27752 df-made 27812 df-old 27813 df-left 27815 df-right 27816 |
| This theorem is referenced by: noinds 27909 norecov 27911 noxpordpred 27917 no2indslem 27918 no3inds 27922 |
| Copyright terms: Public domain | W3C validator |