MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lrrecpred Structured version   Visualization version   GIF version

Theorem lrrecpred 27888
Description: Finally, we calculate the value of the predecessor class over 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypothesis
Ref Expression
lrrec.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
Assertion
Ref Expression
lrrecpred (𝐴 No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem lrrecpred
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 dfpred3g 6265 . 2 (𝐴 No → Pred(𝑅, No , 𝐴) = {𝑏 No 𝑏𝑅𝐴})
2 lrrec.1 . . . . . 6 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
32lrrecval 27883 . . . . 5 ((𝑏 No 𝐴 No ) → (𝑏𝑅𝐴𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))))
43ancoms 458 . . . 4 ((𝐴 No 𝑏 No ) → (𝑏𝑅𝐴𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))))
54rabbidva 3402 . . 3 (𝐴 No → {𝑏 No 𝑏𝑅𝐴} = {𝑏 No 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))})
6 dfrab2 4269 . . . 4 {𝑏 No 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = ({𝑏𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} ∩ No )
7 abid2 2870 . . . . 5 {𝑏𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = (( L ‘𝐴) ∪ ( R ‘𝐴))
87ineq1i 4165 . . . 4 ({𝑏𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} ∩ No ) = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No )
96, 8eqtri 2756 . . 3 {𝑏 No 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No )
105, 9eqtrdi 2784 . 2 (𝐴 No → {𝑏 No 𝑏𝑅𝐴} = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ))
11 leftssno 27827 . . . . 5 ( L ‘𝐴) ⊆ No
1211a1i 11 . . . 4 (𝐴 No → ( L ‘𝐴) ⊆ No )
13 rightssno 27828 . . . . 5 ( R ‘𝐴) ⊆ No
1413a1i 11 . . . 4 (𝐴 No → ( R ‘𝐴) ⊆ No )
1512, 14unssd 4141 . . 3 (𝐴 No → (( L ‘𝐴) ∪ ( R ‘𝐴)) ⊆ No )
16 dfss2 3916 . . 3 ((( L ‘𝐴) ∪ ( R ‘𝐴)) ⊆ No ↔ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
1715, 16sylib 218 . 2 (𝐴 No → ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
181, 10, 173eqtrd 2772 1 (𝐴 No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  {cab 2711  {crab 3396  cun 3896  cin 3897  wss 3898   class class class wbr 5093  {copab 5155  Predcpred 6252  cfv 6486   No csur 27579   L cleft 27787   R cright 27788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-1o 8391  df-2o 8392  df-no 27582  df-slt 27583  df-bday 27584  df-sslt 27722  df-scut 27724  df-made 27789  df-old 27790  df-left 27792  df-right 27793
This theorem is referenced by:  noinds  27889  norecov  27891  noxpordpred  27897  no2indslem  27898  no3inds  27902
  Copyright terms: Public domain W3C validator