MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lrrecpred Structured version   Visualization version   GIF version

Theorem lrrecpred 27885
Description: Finally, we calculate the value of the predecessor class over 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypothesis
Ref Expression
lrrec.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
Assertion
Ref Expression
lrrecpred (𝐴 No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem lrrecpred
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 dfpred3g 6260 . 2 (𝐴 No → Pred(𝑅, No , 𝐴) = {𝑏 No 𝑏𝑅𝐴})
2 lrrec.1 . . . . . 6 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
32lrrecval 27880 . . . . 5 ((𝑏 No 𝐴 No ) → (𝑏𝑅𝐴𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))))
43ancoms 458 . . . 4 ((𝐴 No 𝑏 No ) → (𝑏𝑅𝐴𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))))
54rabbidva 3401 . . 3 (𝐴 No → {𝑏 No 𝑏𝑅𝐴} = {𝑏 No 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))})
6 dfrab2 4270 . . . 4 {𝑏 No 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = ({𝑏𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} ∩ No )
7 abid2 2868 . . . . 5 {𝑏𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = (( L ‘𝐴) ∪ ( R ‘𝐴))
87ineq1i 4166 . . . 4 ({𝑏𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} ∩ No ) = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No )
96, 8eqtri 2754 . . 3 {𝑏 No 𝑏 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))} = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No )
105, 9eqtrdi 2782 . 2 (𝐴 No → {𝑏 No 𝑏𝑅𝐴} = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ))
11 leftssno 27824 . . . . 5 ( L ‘𝐴) ⊆ No
1211a1i 11 . . . 4 (𝐴 No → ( L ‘𝐴) ⊆ No )
13 rightssno 27825 . . . . 5 ( R ‘𝐴) ⊆ No
1413a1i 11 . . . 4 (𝐴 No → ( R ‘𝐴) ⊆ No )
1512, 14unssd 4142 . . 3 (𝐴 No → (( L ‘𝐴) ∪ ( R ‘𝐴)) ⊆ No )
16 dfss2 3920 . . 3 ((( L ‘𝐴) ∪ ( R ‘𝐴)) ⊆ No ↔ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
1715, 16sylib 218 . 2 (𝐴 No → ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∩ No ) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
181, 10, 173eqtrd 2770 1 (𝐴 No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  {cab 2709  {crab 3395  cun 3900  cin 3901  wss 3902   class class class wbr 5091  {copab 5153  Predcpred 6247  cfv 6481   No csur 27576   L cleft 27784   R cright 27785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27579  df-slt 27580  df-bday 27581  df-sslt 27719  df-scut 27721  df-made 27786  df-old 27787  df-left 27789  df-right 27790
This theorem is referenced by:  noinds  27886  norecov  27888  noxpordpred  27894  no2indslem  27895  no3inds  27899
  Copyright terms: Public domain W3C validator