MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predres Structured version   Visualization version   GIF version

Theorem predres 6340
Description: Predecessor class is unaffected by restriction to the base class. (Contributed by Scott Fenton, 25-Nov-2024.)
Assertion
Ref Expression
predres Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅𝐴), 𝐴, 𝑋)

Proof of Theorem predres
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4077 . . . . . 6 {𝑦𝐴𝑦𝑅𝑋} ⊆ 𝐴
2 sseqin2 4215 . . . . . 6 ({𝑦𝐴𝑦𝑅𝑋} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑦𝐴𝑦𝑅𝑋}) = {𝑦𝐴𝑦𝑅𝑋})
31, 2mpbi 229 . . . . 5 (𝐴 ∩ {𝑦𝐴𝑦𝑅𝑋}) = {𝑦𝐴𝑦𝑅𝑋}
4 dfrab2 4310 . . . . 5 {𝑦𝐴𝑦𝑅𝑋} = ({𝑦𝑦𝑅𝑋} ∩ 𝐴)
53, 4eqtr2i 2760 . . . 4 ({𝑦𝑦𝑅𝑋} ∩ 𝐴) = (𝐴 ∩ {𝑦𝐴𝑦𝑅𝑋})
6 iniseg 6096 . . . . . 6 (𝑋 ∈ V → (𝑅 “ {𝑋}) = {𝑦𝑦𝑅𝑋})
76ineq2d 4212 . . . . 5 (𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ {𝑦𝑦𝑅𝑋}))
8 incom 4201 . . . . 5 (𝐴 ∩ {𝑦𝑦𝑅𝑋}) = ({𝑦𝑦𝑅𝑋} ∩ 𝐴)
97, 8eqtrdi 2787 . . . 4 (𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = ({𝑦𝑦𝑅𝑋} ∩ 𝐴))
10 iniseg 6096 . . . . . 6 (𝑋 ∈ V → ((𝑅𝐴) “ {𝑋}) = {𝑦𝑦(𝑅𝐴)𝑋})
11 brres 5988 . . . . . . . 8 (𝑋 ∈ V → (𝑦(𝑅𝐴)𝑋 ↔ (𝑦𝐴𝑦𝑅𝑋)))
1211abbidv 2800 . . . . . . 7 (𝑋 ∈ V → {𝑦𝑦(𝑅𝐴)𝑋} = {𝑦 ∣ (𝑦𝐴𝑦𝑅𝑋)})
13 df-rab 3432 . . . . . . 7 {𝑦𝐴𝑦𝑅𝑋} = {𝑦 ∣ (𝑦𝐴𝑦𝑅𝑋)}
1412, 13eqtr4di 2789 . . . . . 6 (𝑋 ∈ V → {𝑦𝑦(𝑅𝐴)𝑋} = {𝑦𝐴𝑦𝑅𝑋})
1510, 14eqtrd 2771 . . . . 5 (𝑋 ∈ V → ((𝑅𝐴) “ {𝑋}) = {𝑦𝐴𝑦𝑅𝑋})
1615ineq2d 4212 . . . 4 (𝑋 ∈ V → (𝐴 ∩ ((𝑅𝐴) “ {𝑋})) = (𝐴 ∩ {𝑦𝐴𝑦𝑅𝑋}))
175, 9, 163eqtr4a 2797 . . 3 (𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ ((𝑅𝐴) “ {𝑋})))
18 df-pred 6300 . . 3 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
19 df-pred 6300 . . 3 Pred((𝑅𝐴), 𝐴, 𝑋) = (𝐴 ∩ ((𝑅𝐴) “ {𝑋}))
2017, 18, 193eqtr4g 2796 . 2 (𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅𝐴), 𝐴, 𝑋))
21 predprc 6339 . . 3 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅)
22 predprc 6339 . . 3 𝑋 ∈ V → Pred((𝑅𝐴), 𝐴, 𝑋) = ∅)
2321, 22eqtr4d 2774 . 2 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅𝐴), 𝐴, 𝑋))
2420, 23pm2.61i 182 1 Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅𝐴), 𝐴, 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2105  {cab 2708  {crab 3431  Vcvv 3473  cin 3947  wss 3948  c0 4322  {csn 4628   class class class wbr 5148  ccnv 5675  cres 5678  cima 5679  Predcpred 6299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300
This theorem is referenced by:  frmin  9750  frrlem16  9759  frr1  9760
  Copyright terms: Public domain W3C validator