MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predres Structured version   Visualization version   GIF version

Theorem predres 6312
Description: Predecessor class is unaffected by restriction to the base class. (Contributed by Scott Fenton, 25-Nov-2024.)
Assertion
Ref Expression
predres Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅𝐴), 𝐴, 𝑋)

Proof of Theorem predres
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4043 . . . . . 6 {𝑦𝐴𝑦𝑅𝑋} ⊆ 𝐴
2 sseqin2 4186 . . . . . 6 ({𝑦𝐴𝑦𝑅𝑋} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑦𝐴𝑦𝑅𝑋}) = {𝑦𝐴𝑦𝑅𝑋})
31, 2mpbi 230 . . . . 5 (𝐴 ∩ {𝑦𝐴𝑦𝑅𝑋}) = {𝑦𝐴𝑦𝑅𝑋}
4 dfrab2 4283 . . . . 5 {𝑦𝐴𝑦𝑅𝑋} = ({𝑦𝑦𝑅𝑋} ∩ 𝐴)
53, 4eqtr2i 2753 . . . 4 ({𝑦𝑦𝑅𝑋} ∩ 𝐴) = (𝐴 ∩ {𝑦𝐴𝑦𝑅𝑋})
6 iniseg 6068 . . . . . 6 (𝑋 ∈ V → (𝑅 “ {𝑋}) = {𝑦𝑦𝑅𝑋})
76ineq2d 4183 . . . . 5 (𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ {𝑦𝑦𝑅𝑋}))
8 incom 4172 . . . . 5 (𝐴 ∩ {𝑦𝑦𝑅𝑋}) = ({𝑦𝑦𝑅𝑋} ∩ 𝐴)
97, 8eqtrdi 2780 . . . 4 (𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = ({𝑦𝑦𝑅𝑋} ∩ 𝐴))
10 iniseg 6068 . . . . . 6 (𝑋 ∈ V → ((𝑅𝐴) “ {𝑋}) = {𝑦𝑦(𝑅𝐴)𝑋})
11 brres 5957 . . . . . . . 8 (𝑋 ∈ V → (𝑦(𝑅𝐴)𝑋 ↔ (𝑦𝐴𝑦𝑅𝑋)))
1211abbidv 2795 . . . . . . 7 (𝑋 ∈ V → {𝑦𝑦(𝑅𝐴)𝑋} = {𝑦 ∣ (𝑦𝐴𝑦𝑅𝑋)})
13 df-rab 3406 . . . . . . 7 {𝑦𝐴𝑦𝑅𝑋} = {𝑦 ∣ (𝑦𝐴𝑦𝑅𝑋)}
1412, 13eqtr4di 2782 . . . . . 6 (𝑋 ∈ V → {𝑦𝑦(𝑅𝐴)𝑋} = {𝑦𝐴𝑦𝑅𝑋})
1510, 14eqtrd 2764 . . . . 5 (𝑋 ∈ V → ((𝑅𝐴) “ {𝑋}) = {𝑦𝐴𝑦𝑅𝑋})
1615ineq2d 4183 . . . 4 (𝑋 ∈ V → (𝐴 ∩ ((𝑅𝐴) “ {𝑋})) = (𝐴 ∩ {𝑦𝐴𝑦𝑅𝑋}))
175, 9, 163eqtr4a 2790 . . 3 (𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ ((𝑅𝐴) “ {𝑋})))
18 df-pred 6274 . . 3 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
19 df-pred 6274 . . 3 Pred((𝑅𝐴), 𝐴, 𝑋) = (𝐴 ∩ ((𝑅𝐴) “ {𝑋}))
2017, 18, 193eqtr4g 2789 . 2 (𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅𝐴), 𝐴, 𝑋))
21 predprc 6311 . . 3 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅)
22 predprc 6311 . . 3 𝑋 ∈ V → Pred((𝑅𝐴), 𝐴, 𝑋) = ∅)
2321, 22eqtr4d 2767 . 2 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅𝐴), 𝐴, 𝑋))
2420, 23pm2.61i 182 1 Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅𝐴), 𝐴, 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  {cab 2707  {crab 3405  Vcvv 3447  cin 3913  wss 3914  c0 4296  {csn 4589   class class class wbr 5107  ccnv 5637  cres 5640  cima 5641  Predcpred 6273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274
This theorem is referenced by:  frmin  9702  frrlem16  9711  frr1  9712
  Copyright terms: Public domain W3C validator