MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predres Structured version   Visualization version   GIF version

Theorem predres 6294
Description: Predecessor class is unaffected by restriction to the base class. (Contributed by Scott Fenton, 25-Nov-2024.)
Assertion
Ref Expression
predres Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅𝐴), 𝐴, 𝑋)

Proof of Theorem predres
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4029 . . . . . 6 {𝑦𝐴𝑦𝑅𝑋} ⊆ 𝐴
2 sseqin2 4172 . . . . . 6 ({𝑦𝐴𝑦𝑅𝑋} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑦𝐴𝑦𝑅𝑋}) = {𝑦𝐴𝑦𝑅𝑋})
31, 2mpbi 230 . . . . 5 (𝐴 ∩ {𝑦𝐴𝑦𝑅𝑋}) = {𝑦𝐴𝑦𝑅𝑋}
4 dfrab2 4269 . . . . 5 {𝑦𝐴𝑦𝑅𝑋} = ({𝑦𝑦𝑅𝑋} ∩ 𝐴)
53, 4eqtr2i 2757 . . . 4 ({𝑦𝑦𝑅𝑋} ∩ 𝐴) = (𝐴 ∩ {𝑦𝐴𝑦𝑅𝑋})
6 iniseg 6053 . . . . . 6 (𝑋 ∈ V → (𝑅 “ {𝑋}) = {𝑦𝑦𝑅𝑋})
76ineq2d 4169 . . . . 5 (𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ {𝑦𝑦𝑅𝑋}))
8 incom 4158 . . . . 5 (𝐴 ∩ {𝑦𝑦𝑅𝑋}) = ({𝑦𝑦𝑅𝑋} ∩ 𝐴)
97, 8eqtrdi 2784 . . . 4 (𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = ({𝑦𝑦𝑅𝑋} ∩ 𝐴))
10 iniseg 6053 . . . . . 6 (𝑋 ∈ V → ((𝑅𝐴) “ {𝑋}) = {𝑦𝑦(𝑅𝐴)𝑋})
11 brres 5942 . . . . . . . 8 (𝑋 ∈ V → (𝑦(𝑅𝐴)𝑋 ↔ (𝑦𝐴𝑦𝑅𝑋)))
1211abbidv 2799 . . . . . . 7 (𝑋 ∈ V → {𝑦𝑦(𝑅𝐴)𝑋} = {𝑦 ∣ (𝑦𝐴𝑦𝑅𝑋)})
13 df-rab 3397 . . . . . . 7 {𝑦𝐴𝑦𝑅𝑋} = {𝑦 ∣ (𝑦𝐴𝑦𝑅𝑋)}
1412, 13eqtr4di 2786 . . . . . 6 (𝑋 ∈ V → {𝑦𝑦(𝑅𝐴)𝑋} = {𝑦𝐴𝑦𝑅𝑋})
1510, 14eqtrd 2768 . . . . 5 (𝑋 ∈ V → ((𝑅𝐴) “ {𝑋}) = {𝑦𝐴𝑦𝑅𝑋})
1615ineq2d 4169 . . . 4 (𝑋 ∈ V → (𝐴 ∩ ((𝑅𝐴) “ {𝑋})) = (𝐴 ∩ {𝑦𝐴𝑦𝑅𝑋}))
175, 9, 163eqtr4a 2794 . . 3 (𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ ((𝑅𝐴) “ {𝑋})))
18 df-pred 6256 . . 3 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
19 df-pred 6256 . . 3 Pred((𝑅𝐴), 𝐴, 𝑋) = (𝐴 ∩ ((𝑅𝐴) “ {𝑋}))
2017, 18, 193eqtr4g 2793 . 2 (𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅𝐴), 𝐴, 𝑋))
21 predprc 6293 . . 3 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅)
22 predprc 6293 . . 3 𝑋 ∈ V → Pred((𝑅𝐴), 𝐴, 𝑋) = ∅)
2321, 22eqtr4d 2771 . 2 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅𝐴), 𝐴, 𝑋))
2420, 23pm2.61i 182 1 Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅𝐴), 𝐴, 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2113  {cab 2711  {crab 3396  Vcvv 3437  cin 3897  wss 3898  c0 4282  {csn 4577   class class class wbr 5095  ccnv 5620  cres 5623  cima 5624  Predcpred 6255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256
This theorem is referenced by:  frmin  9653  frrlem16  9662  frr1  9663
  Copyright terms: Public domain W3C validator