Step | Hyp | Ref
| Expression |
1 | | ssrab2 4018 |
. . . . . 6
⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} ⊆ 𝐴 |
2 | | sseqin2 4155 |
. . . . . 6
⊢ ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) |
3 | 1, 2 | mpbi 229 |
. . . . 5
⊢ (𝐴 ∩ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} |
4 | | dfrab2 4250 |
. . . . 5
⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} = ({𝑦 ∣ 𝑦𝑅𝑋} ∩ 𝐴) |
5 | 3, 4 | eqtr2i 2769 |
. . . 4
⊢ ({𝑦 ∣ 𝑦𝑅𝑋} ∩ 𝐴) = (𝐴 ∩ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) |
6 | | iniseg 6003 |
. . . . . 6
⊢ (𝑋 ∈ V → (◡𝑅 “ {𝑋}) = {𝑦 ∣ 𝑦𝑅𝑋}) |
7 | 6 | ineq2d 4152 |
. . . . 5
⊢ (𝑋 ∈ V → (𝐴 ∩ (◡𝑅 “ {𝑋})) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋})) |
8 | | incom 4140 |
. . . . 5
⊢ (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋}) = ({𝑦 ∣ 𝑦𝑅𝑋} ∩ 𝐴) |
9 | 7, 8 | eqtrdi 2796 |
. . . 4
⊢ (𝑋 ∈ V → (𝐴 ∩ (◡𝑅 “ {𝑋})) = ({𝑦 ∣ 𝑦𝑅𝑋} ∩ 𝐴)) |
10 | | iniseg 6003 |
. . . . . 6
⊢ (𝑋 ∈ V → (◡(𝑅 ↾ 𝐴) “ {𝑋}) = {𝑦 ∣ 𝑦(𝑅 ↾ 𝐴)𝑋}) |
11 | | brres 5896 |
. . . . . . . 8
⊢ (𝑋 ∈ V → (𝑦(𝑅 ↾ 𝐴)𝑋 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋))) |
12 | 11 | abbidv 2809 |
. . . . . . 7
⊢ (𝑋 ∈ V → {𝑦 ∣ 𝑦(𝑅 ↾ 𝐴)𝑋} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋)}) |
13 | | df-rab 3075 |
. . . . . . 7
⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋)} |
14 | 12, 13 | eqtr4di 2798 |
. . . . . 6
⊢ (𝑋 ∈ V → {𝑦 ∣ 𝑦(𝑅 ↾ 𝐴)𝑋} = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) |
15 | 10, 14 | eqtrd 2780 |
. . . . 5
⊢ (𝑋 ∈ V → (◡(𝑅 ↾ 𝐴) “ {𝑋}) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) |
16 | 15 | ineq2d 4152 |
. . . 4
⊢ (𝑋 ∈ V → (𝐴 ∩ (◡(𝑅 ↾ 𝐴) “ {𝑋})) = (𝐴 ∩ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋})) |
17 | 5, 9, 16 | 3eqtr4a 2806 |
. . 3
⊢ (𝑋 ∈ V → (𝐴 ∩ (◡𝑅 “ {𝑋})) = (𝐴 ∩ (◡(𝑅 ↾ 𝐴) “ {𝑋}))) |
18 | | df-pred 6200 |
. . 3
⊢
Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
19 | | df-pred 6200 |
. . 3
⊢
Pred((𝑅 ↾
𝐴), 𝐴, 𝑋) = (𝐴 ∩ (◡(𝑅 ↾ 𝐴) “ {𝑋})) |
20 | 17, 18, 19 | 3eqtr4g 2805 |
. 2
⊢ (𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅 ↾ 𝐴), 𝐴, 𝑋)) |
21 | | predprc 6239 |
. . 3
⊢ (¬
𝑋 ∈ V →
Pred(𝑅, 𝐴, 𝑋) = ∅) |
22 | | predprc 6239 |
. . 3
⊢ (¬
𝑋 ∈ V →
Pred((𝑅 ↾ 𝐴), 𝐴, 𝑋) = ∅) |
23 | 21, 22 | eqtr4d 2783 |
. 2
⊢ (¬
𝑋 ∈ V →
Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅 ↾ 𝐴), 𝐴, 𝑋)) |
24 | 20, 23 | pm2.61i 182 |
1
⊢
Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅 ↾ 𝐴), 𝐴, 𝑋) |