MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predres Structured version   Visualization version   GIF version

Theorem predres 6278
Description: Predecessor class is unaffected by restriction to the base class. (Contributed by Scott Fenton, 25-Nov-2024.)
Assertion
Ref Expression
predres Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅𝐴), 𝐴, 𝑋)

Proof of Theorem predres
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4025 . . . . . 6 {𝑦𝐴𝑦𝑅𝑋} ⊆ 𝐴
2 sseqin2 4162 . . . . . 6 ({𝑦𝐴𝑦𝑅𝑋} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑦𝐴𝑦𝑅𝑋}) = {𝑦𝐴𝑦𝑅𝑋})
31, 2mpbi 229 . . . . 5 (𝐴 ∩ {𝑦𝐴𝑦𝑅𝑋}) = {𝑦𝐴𝑦𝑅𝑋}
4 dfrab2 4257 . . . . 5 {𝑦𝐴𝑦𝑅𝑋} = ({𝑦𝑦𝑅𝑋} ∩ 𝐴)
53, 4eqtr2i 2765 . . . 4 ({𝑦𝑦𝑅𝑋} ∩ 𝐴) = (𝐴 ∩ {𝑦𝐴𝑦𝑅𝑋})
6 iniseg 6035 . . . . . 6 (𝑋 ∈ V → (𝑅 “ {𝑋}) = {𝑦𝑦𝑅𝑋})
76ineq2d 4159 . . . . 5 (𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ {𝑦𝑦𝑅𝑋}))
8 incom 4148 . . . . 5 (𝐴 ∩ {𝑦𝑦𝑅𝑋}) = ({𝑦𝑦𝑅𝑋} ∩ 𝐴)
97, 8eqtrdi 2792 . . . 4 (𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = ({𝑦𝑦𝑅𝑋} ∩ 𝐴))
10 iniseg 6035 . . . . . 6 (𝑋 ∈ V → ((𝑅𝐴) “ {𝑋}) = {𝑦𝑦(𝑅𝐴)𝑋})
11 brres 5930 . . . . . . . 8 (𝑋 ∈ V → (𝑦(𝑅𝐴)𝑋 ↔ (𝑦𝐴𝑦𝑅𝑋)))
1211abbidv 2805 . . . . . . 7 (𝑋 ∈ V → {𝑦𝑦(𝑅𝐴)𝑋} = {𝑦 ∣ (𝑦𝐴𝑦𝑅𝑋)})
13 df-rab 3404 . . . . . . 7 {𝑦𝐴𝑦𝑅𝑋} = {𝑦 ∣ (𝑦𝐴𝑦𝑅𝑋)}
1412, 13eqtr4di 2794 . . . . . 6 (𝑋 ∈ V → {𝑦𝑦(𝑅𝐴)𝑋} = {𝑦𝐴𝑦𝑅𝑋})
1510, 14eqtrd 2776 . . . . 5 (𝑋 ∈ V → ((𝑅𝐴) “ {𝑋}) = {𝑦𝐴𝑦𝑅𝑋})
1615ineq2d 4159 . . . 4 (𝑋 ∈ V → (𝐴 ∩ ((𝑅𝐴) “ {𝑋})) = (𝐴 ∩ {𝑦𝐴𝑦𝑅𝑋}))
175, 9, 163eqtr4a 2802 . . 3 (𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ ((𝑅𝐴) “ {𝑋})))
18 df-pred 6238 . . 3 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
19 df-pred 6238 . . 3 Pred((𝑅𝐴), 𝐴, 𝑋) = (𝐴 ∩ ((𝑅𝐴) “ {𝑋}))
2017, 18, 193eqtr4g 2801 . 2 (𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅𝐴), 𝐴, 𝑋))
21 predprc 6277 . . 3 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅)
22 predprc 6277 . . 3 𝑋 ∈ V → Pred((𝑅𝐴), 𝐴, 𝑋) = ∅)
2321, 22eqtr4d 2779 . 2 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅𝐴), 𝐴, 𝑋))
2420, 23pm2.61i 182 1 Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅𝐴), 𝐴, 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1540  wcel 2105  {cab 2713  {crab 3403  Vcvv 3441  cin 3897  wss 3898  c0 4269  {csn 4573   class class class wbr 5092  ccnv 5619  cres 5622  cima 5623  Predcpred 6237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-xp 5626  df-cnv 5628  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238
This theorem is referenced by:  frmin  9606  frrlem16  9615  frr1  9616
  Copyright terms: Public domain W3C validator