Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > glbdm | Structured version Visualization version GIF version |
Description: Domain of the greatest lower bound function of a poset. (Contributed by NM, 6-Sep-2018.) |
Ref | Expression |
---|---|
glbfval.b | ⊢ 𝐵 = (Base‘𝐾) |
glbfval.l | ⊢ ≤ = (le‘𝐾) |
glbfval.g | ⊢ 𝐺 = (glb‘𝐾) |
glbfval.p | ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
glbfval.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
Ref | Expression |
---|---|
glbdm | ⊢ (𝜑 → dom 𝐺 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | glbfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | glbfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | glbfval.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
4 | glbfval.p | . . . 4 ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | |
5 | glbfval.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
6 | 1, 2, 3, 4, 5 | glbfval 17996 | . . 3 ⊢ (𝜑 → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) |
7 | 6 | dmeqd 5803 | . 2 ⊢ (𝜑 → dom 𝐺 = dom ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) |
8 | riotaex 7216 | . . . . 5 ⊢ (℩𝑥 ∈ 𝐵 𝜓) ∈ V | |
9 | eqid 2738 | . . . . 5 ⊢ (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) = (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) | |
10 | 8, 9 | dmmpti 6561 | . . . 4 ⊢ dom (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) = 𝒫 𝐵 |
11 | 10 | ineq2i 4140 | . . 3 ⊢ ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓))) = ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ 𝒫 𝐵) |
12 | dmres 5902 | . . 3 ⊢ dom ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) = ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓))) | |
13 | dfrab2 4241 | . . 3 ⊢ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓} = ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ 𝒫 𝐵) | |
14 | 11, 12, 13 | 3eqtr4i 2776 | . 2 ⊢ dom ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓} |
15 | 7, 14 | eqtrdi 2795 | 1 ⊢ (𝜑 → dom 𝐺 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃!wreu 3065 {crab 3067 ∩ cin 3882 𝒫 cpw 4530 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ↾ cres 5582 ‘cfv 6418 ℩crio 7211 Basecbs 16840 lecple 16895 glbcglb 17943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-glb 17980 |
This theorem is referenced by: glbeldm 17999 xrsclat 31191 isclatd 46157 |
Copyright terms: Public domain | W3C validator |