| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > glbdm | Structured version Visualization version GIF version | ||
| Description: Domain of the greatest lower bound function of a poset. (Contributed by NM, 6-Sep-2018.) |
| Ref | Expression |
|---|---|
| glbfval.b | ⊢ 𝐵 = (Base‘𝐾) |
| glbfval.l | ⊢ ≤ = (le‘𝐾) |
| glbfval.g | ⊢ 𝐺 = (glb‘𝐾) |
| glbfval.p | ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| glbfval.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| glbdm | ⊢ (𝜑 → dom 𝐺 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | glbfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | glbfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | glbfval.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
| 4 | glbfval.p | . . . 4 ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | |
| 5 | glbfval.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 6 | 1, 2, 3, 4, 5 | glbfval 18371 | . . 3 ⊢ (𝜑 → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) |
| 7 | 6 | dmeqd 5885 | . 2 ⊢ (𝜑 → dom 𝐺 = dom ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) |
| 8 | riotaex 7364 | . . . . 5 ⊢ (℩𝑥 ∈ 𝐵 𝜓) ∈ V | |
| 9 | eqid 2735 | . . . . 5 ⊢ (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) = (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) | |
| 10 | 8, 9 | dmmpti 6681 | . . . 4 ⊢ dom (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) = 𝒫 𝐵 |
| 11 | 10 | ineq2i 4192 | . . 3 ⊢ ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓))) = ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ 𝒫 𝐵) |
| 12 | dmres 5999 | . . 3 ⊢ dom ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) = ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓))) | |
| 13 | dfrab2 4295 | . . 3 ⊢ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓} = ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ 𝒫 𝐵) | |
| 14 | 11, 12, 13 | 3eqtr4i 2768 | . 2 ⊢ dom ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓} |
| 15 | 7, 14 | eqtrdi 2786 | 1 ⊢ (𝜑 → dom 𝐺 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ∀wral 3051 ∃!wreu 3357 {crab 3415 ∩ cin 3925 𝒫 cpw 4575 class class class wbr 5119 ↦ cmpt 5201 dom cdm 5654 ↾ cres 5656 ‘cfv 6530 ℩crio 7359 Basecbs 17226 lecple 17276 glbcglb 18320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-glb 18355 |
| This theorem is referenced by: glbeldm 18374 xrsclat 32949 isclatd 48905 |
| Copyright terms: Public domain | W3C validator |