MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbdm Structured version   Visualization version   GIF version

Theorem glbdm 18372
Description: Domain of the greatest lower bound function of a poset. (Contributed by NM, 6-Sep-2018.)
Hypotheses
Ref Expression
glbfval.b 𝐵 = (Base‘𝐾)
glbfval.l = (le‘𝐾)
glbfval.g 𝐺 = (glb‘𝐾)
glbfval.p (𝜓 ↔ (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
glbfval.k (𝜑𝐾𝑉)
Assertion
Ref Expression
glbdm (𝜑 → dom 𝐺 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓})
Distinct variable groups:   𝑥,𝑠,𝑧,𝐵   𝑦,𝑠,𝐾,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑠)   𝜓(𝑥,𝑦,𝑧,𝑠)   𝐵(𝑦)   𝐺(𝑥,𝑦,𝑧,𝑠)   (𝑥,𝑦,𝑧,𝑠)   𝑉(𝑥,𝑦,𝑧,𝑠)

Proof of Theorem glbdm
StepHypRef Expression
1 glbfval.b . . . 4 𝐵 = (Base‘𝐾)
2 glbfval.l . . . 4 = (le‘𝐾)
3 glbfval.g . . . 4 𝐺 = (glb‘𝐾)
4 glbfval.p . . . 4 (𝜓 ↔ (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
5 glbfval.k . . . 4 (𝜑𝐾𝑉)
61, 2, 3, 4, 5glbfval 18371 . . 3 (𝜑𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
76dmeqd 5885 . 2 (𝜑 → dom 𝐺 = dom ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
8 riotaex 7364 . . . . 5 (𝑥𝐵 𝜓) ∈ V
9 eqid 2735 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓))
108, 9dmmpti 6681 . . . 4 dom (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) = 𝒫 𝐵
1110ineq2i 4192 . . 3 ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓))) = ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ 𝒫 𝐵)
12 dmres 5999 . . 3 dom ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}) = ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)))
13 dfrab2 4295 . . 3 {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓} = ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ 𝒫 𝐵)
1411, 12, 133eqtr4i 2768 . 2 dom ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}) = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓}
157, 14eqtrdi 2786 1 (𝜑 → dom 𝐺 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2713  wral 3051  ∃!wreu 3357  {crab 3415  cin 3925  𝒫 cpw 4575   class class class wbr 5119  cmpt 5201  dom cdm 5654  cres 5656  cfv 6530  crio 7359  Basecbs 17226  lecple 17276  glbcglb 18320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-glb 18355
This theorem is referenced by:  glbeldm  18374  xrsclat  32949  isclatd  48905
  Copyright terms: Public domain W3C validator