![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > glbdm | Structured version Visualization version GIF version |
Description: Domain of the greatest lower bound function of a poset. (Contributed by NM, 6-Sep-2018.) |
Ref | Expression |
---|---|
glbfval.b | ⊢ 𝐵 = (Base‘𝐾) |
glbfval.l | ⊢ ≤ = (le‘𝐾) |
glbfval.g | ⊢ 𝐺 = (glb‘𝐾) |
glbfval.p | ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
glbfval.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
Ref | Expression |
---|---|
glbdm | ⊢ (𝜑 → dom 𝐺 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | glbfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | glbfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | glbfval.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
4 | glbfval.p | . . . 4 ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | |
5 | glbfval.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
6 | 1, 2, 3, 4, 5 | glbfval 18433 | . . 3 ⊢ (𝜑 → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) |
7 | 6 | dmeqd 5930 | . 2 ⊢ (𝜑 → dom 𝐺 = dom ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) |
8 | riotaex 7408 | . . . . 5 ⊢ (℩𝑥 ∈ 𝐵 𝜓) ∈ V | |
9 | eqid 2740 | . . . . 5 ⊢ (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) = (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) | |
10 | 8, 9 | dmmpti 6724 | . . . 4 ⊢ dom (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) = 𝒫 𝐵 |
11 | 10 | ineq2i 4238 | . . 3 ⊢ ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓))) = ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ 𝒫 𝐵) |
12 | dmres 6041 | . . 3 ⊢ dom ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) = ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓))) | |
13 | dfrab2 4339 | . . 3 ⊢ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓} = ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ 𝒫 𝐵) | |
14 | 11, 12, 13 | 3eqtr4i 2778 | . 2 ⊢ dom ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓} |
15 | 7, 14 | eqtrdi 2796 | 1 ⊢ (𝜑 → dom 𝐺 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃!wreu 3386 {crab 3443 ∩ cin 3975 𝒫 cpw 4622 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ↾ cres 5702 ‘cfv 6573 ℩crio 7403 Basecbs 17258 lecple 17318 glbcglb 18380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-glb 18417 |
This theorem is referenced by: glbeldm 18436 xrsclat 32994 isclatd 48655 |
Copyright terms: Public domain | W3C validator |