| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrbagsn | Structured version Visualization version GIF version | ||
| Description: A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| psrbag0.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Ref | Expression |
|---|---|
| psrbagsn | ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12418 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 2 | 0nn0 12417 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | ifcli 4526 | . . . . . 6 ⊢ if(𝑥 = 𝐾, 1, 0) ∈ ℕ0 |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐼) → if(𝑥 = 𝐾, 1, 0) ∈ ℕ0) |
| 5 | 4 | fmpttd 7053 | . . . 4 ⊢ (⊤ → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0) |
| 6 | 5 | mptru 1547 | . . 3 ⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 |
| 7 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) | |
| 8 | 7 | mptpreima 6191 | . . . 4 ⊢ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) = {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} |
| 9 | snfi 8975 | . . . . . 6 ⊢ {𝐾} ∈ Fin | |
| 10 | inss1 4190 | . . . . . . 7 ⊢ ({𝑥 ∣ 𝑥 = 𝐾} ∩ 𝐼) ⊆ {𝑥 ∣ 𝑥 = 𝐾} | |
| 11 | dfrab2 4273 | . . . . . . 7 ⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} = ({𝑥 ∣ 𝑥 = 𝐾} ∩ 𝐼) | |
| 12 | df-sn 4580 | . . . . . . 7 ⊢ {𝐾} = {𝑥 ∣ 𝑥 = 𝐾} | |
| 13 | 10, 11, 12 | 3sstr4i 3989 | . . . . . 6 ⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ⊆ {𝐾} |
| 14 | ssfi 9097 | . . . . . 6 ⊢ (({𝐾} ∈ Fin ∧ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ⊆ {𝐾}) → {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ∈ Fin) | |
| 15 | 9, 13, 14 | mp2an 692 | . . . . 5 ⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ∈ Fin |
| 16 | 0nnn 12182 | . . . . . . . . 9 ⊢ ¬ 0 ∈ ℕ | |
| 17 | iffalse 4487 | . . . . . . . . . 10 ⊢ (¬ 𝑥 = 𝐾 → if(𝑥 = 𝐾, 1, 0) = 0) | |
| 18 | 17 | eleq1d 2813 | . . . . . . . . 9 ⊢ (¬ 𝑥 = 𝐾 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ ↔ 0 ∈ ℕ)) |
| 19 | 16, 18 | mtbiri 327 | . . . . . . . 8 ⊢ (¬ 𝑥 = 𝐾 → ¬ if(𝑥 = 𝐾, 1, 0) ∈ ℕ) |
| 20 | 19 | con4i 114 | . . . . . . 7 ⊢ (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾) |
| 21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ 𝐼 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾)) |
| 22 | 21 | ss2rabi 4030 | . . . . 5 ⊢ {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} |
| 23 | ssfi 9097 | . . . . 5 ⊢ (({𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ∈ Fin ∧ {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾}) → {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin) | |
| 24 | 15, 22, 23 | mp2an 692 | . . . 4 ⊢ {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin |
| 25 | 8, 24 | eqeltri 2824 | . . 3 ⊢ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin |
| 26 | 6, 25 | pm3.2i 470 | . 2 ⊢ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin) |
| 27 | psrbag0.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 28 | 27 | psrbag 21842 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷 ↔ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin))) |
| 29 | 26, 28 | mpbiri 258 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 {cab 2707 {crab 3396 ∩ cin 3904 ⊆ wss 3905 ifcif 4478 {csn 4579 ↦ cmpt 5176 ◡ccnv 5622 “ cima 5626 ⟶wf 6482 (class class class)co 7353 ↑m cmap 8760 Fincfn 8879 0cc0 11028 1c1 11029 ℕcn 12146 ℕ0cn0 12402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-nn 12147 df-n0 12403 |
| This theorem is referenced by: evlslem1 22005 psdmplcl 22065 psdadd 22066 psdvsca 22067 psdmul 22069 psdmvr 22072 |
| Copyright terms: Public domain | W3C validator |