MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagsn Structured version   Visualization version   GIF version

Theorem psrbagsn 20278
Description: A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypothesis
Ref Expression
psrbag0.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagsn (𝐼𝑉 → (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷)
Distinct variable groups:   𝑓,𝐼,𝑥   𝑓,𝐾,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑓)   𝑉(𝑥,𝑓)

Proof of Theorem psrbagsn
StepHypRef Expression
1 1nn0 11916 . . . . . . 7 1 ∈ ℕ0
2 0nn0 11915 . . . . . . 7 0 ∈ ℕ0
31, 2ifcli 4516 . . . . . 6 if(𝑥 = 𝐾, 1, 0) ∈ ℕ0
43a1i 11 . . . . 5 ((⊤ ∧ 𝑥𝐼) → if(𝑥 = 𝐾, 1, 0) ∈ ℕ0)
54fmpttd 6882 . . . 4 (⊤ → (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0)
65mptru 1543 . . 3 (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0
7 eqid 2824 . . . . 5 (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) = (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0))
87mptpreima 6095 . . . 4 ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) = {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ}
9 snfi 8597 . . . . . 6 {𝐾} ∈ Fin
10 inss1 4208 . . . . . . 7 ({𝑥𝑥 = 𝐾} ∩ 𝐼) ⊆ {𝑥𝑥 = 𝐾}
11 dfrab2 4282 . . . . . . 7 {𝑥𝐼𝑥 = 𝐾} = ({𝑥𝑥 = 𝐾} ∩ 𝐼)
12 df-sn 4571 . . . . . . 7 {𝐾} = {𝑥𝑥 = 𝐾}
1310, 11, 123sstr4i 4013 . . . . . 6 {𝑥𝐼𝑥 = 𝐾} ⊆ {𝐾}
14 ssfi 8741 . . . . . 6 (({𝐾} ∈ Fin ∧ {𝑥𝐼𝑥 = 𝐾} ⊆ {𝐾}) → {𝑥𝐼𝑥 = 𝐾} ∈ Fin)
159, 13, 14mp2an 690 . . . . 5 {𝑥𝐼𝑥 = 𝐾} ∈ Fin
16 0nnn 11676 . . . . . . . . 9 ¬ 0 ∈ ℕ
17 iffalse 4479 . . . . . . . . . 10 𝑥 = 𝐾 → if(𝑥 = 𝐾, 1, 0) = 0)
1817eleq1d 2900 . . . . . . . . 9 𝑥 = 𝐾 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ ↔ 0 ∈ ℕ))
1916, 18mtbiri 329 . . . . . . . 8 𝑥 = 𝐾 → ¬ if(𝑥 = 𝐾, 1, 0) ∈ ℕ)
2019con4i 114 . . . . . . 7 (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾)
2120a1i 11 . . . . . 6 (𝑥𝐼 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾))
2221ss2rabi 4056 . . . . 5 {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥𝐼𝑥 = 𝐾}
23 ssfi 8741 . . . . 5 (({𝑥𝐼𝑥 = 𝐾} ∈ Fin ∧ {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥𝐼𝑥 = 𝐾}) → {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin)
2415, 22, 23mp2an 690 . . . 4 {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin
258, 24eqeltri 2912 . . 3 ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin
266, 25pm3.2i 473 . 2 ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin)
27 psrbag0.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2827psrbag 20147 . 2 (𝐼𝑉 → ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷 ↔ ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin)))
2926, 28mpbiri 260 1 (𝐼𝑉 → (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wtru 1537  wcel 2113  {cab 2802  {crab 3145  cin 3938  wss 3939  ifcif 4470  {csn 4570  cmpt 5149  ccnv 5557  cima 5561  wf 6354  (class class class)co 7159  m cmap 8409  Fincfn 8512  0cc0 10540  1c1 10541  cn 11641  0cn0 11900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-nn 11642  df-n0 11901
This theorem is referenced by:  evlslem1  20298
  Copyright terms: Public domain W3C validator