| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrbagsn | Structured version Visualization version GIF version | ||
| Description: A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| psrbag0.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Ref | Expression |
|---|---|
| psrbagsn | ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12458 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 2 | 0nn0 12457 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | ifcli 4536 | . . . . . 6 ⊢ if(𝑥 = 𝐾, 1, 0) ∈ ℕ0 |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐼) → if(𝑥 = 𝐾, 1, 0) ∈ ℕ0) |
| 5 | 4 | fmpttd 7087 | . . . 4 ⊢ (⊤ → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0) |
| 6 | 5 | mptru 1547 | . . 3 ⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 |
| 7 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) | |
| 8 | 7 | mptpreima 6211 | . . . 4 ⊢ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) = {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} |
| 9 | snfi 9014 | . . . . . 6 ⊢ {𝐾} ∈ Fin | |
| 10 | inss1 4200 | . . . . . . 7 ⊢ ({𝑥 ∣ 𝑥 = 𝐾} ∩ 𝐼) ⊆ {𝑥 ∣ 𝑥 = 𝐾} | |
| 11 | dfrab2 4283 | . . . . . . 7 ⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} = ({𝑥 ∣ 𝑥 = 𝐾} ∩ 𝐼) | |
| 12 | df-sn 4590 | . . . . . . 7 ⊢ {𝐾} = {𝑥 ∣ 𝑥 = 𝐾} | |
| 13 | 10, 11, 12 | 3sstr4i 3998 | . . . . . 6 ⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ⊆ {𝐾} |
| 14 | ssfi 9137 | . . . . . 6 ⊢ (({𝐾} ∈ Fin ∧ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ⊆ {𝐾}) → {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ∈ Fin) | |
| 15 | 9, 13, 14 | mp2an 692 | . . . . 5 ⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ∈ Fin |
| 16 | 0nnn 12222 | . . . . . . . . 9 ⊢ ¬ 0 ∈ ℕ | |
| 17 | iffalse 4497 | . . . . . . . . . 10 ⊢ (¬ 𝑥 = 𝐾 → if(𝑥 = 𝐾, 1, 0) = 0) | |
| 18 | 17 | eleq1d 2813 | . . . . . . . . 9 ⊢ (¬ 𝑥 = 𝐾 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ ↔ 0 ∈ ℕ)) |
| 19 | 16, 18 | mtbiri 327 | . . . . . . . 8 ⊢ (¬ 𝑥 = 𝐾 → ¬ if(𝑥 = 𝐾, 1, 0) ∈ ℕ) |
| 20 | 19 | con4i 114 | . . . . . . 7 ⊢ (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾) |
| 21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ 𝐼 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾)) |
| 22 | 21 | ss2rabi 4040 | . . . . 5 ⊢ {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} |
| 23 | ssfi 9137 | . . . . 5 ⊢ (({𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ∈ Fin ∧ {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾}) → {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin) | |
| 24 | 15, 22, 23 | mp2an 692 | . . . 4 ⊢ {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin |
| 25 | 8, 24 | eqeltri 2824 | . . 3 ⊢ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin |
| 26 | 6, 25 | pm3.2i 470 | . 2 ⊢ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin) |
| 27 | psrbag0.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 28 | 27 | psrbag 21826 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷 ↔ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin))) |
| 29 | 26, 28 | mpbiri 258 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 {cab 2707 {crab 3405 ∩ cin 3913 ⊆ wss 3914 ifcif 4488 {csn 4589 ↦ cmpt 5188 ◡ccnv 5637 “ cima 5641 ⟶wf 6507 (class class class)co 7387 ↑m cmap 8799 Fincfn 8918 0cc0 11068 1c1 11069 ℕcn 12186 ℕ0cn0 12442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-nn 12187 df-n0 12443 |
| This theorem is referenced by: evlslem1 21989 psdmplcl 22049 psdadd 22050 psdvsca 22051 psdmul 22053 psdmvr 22056 |
| Copyright terms: Public domain | W3C validator |