MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagsn Structured version   Visualization version   GIF version

Theorem psrbagsn 19982
Description: A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypothesis
Ref Expression
psrbag0.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagsn (𝐼𝑉 → (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷)
Distinct variable groups:   𝑓,𝐼,𝑥   𝑓,𝐾,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑓)   𝑉(𝑥,𝑓)

Proof of Theorem psrbagsn
StepHypRef Expression
1 1nn0 11719 . . . . . . 7 1 ∈ ℕ0
2 0nn0 11718 . . . . . . 7 0 ∈ ℕ0
31, 2ifcli 4390 . . . . . 6 if(𝑥 = 𝐾, 1, 0) ∈ ℕ0
43a1i 11 . . . . 5 ((⊤ ∧ 𝑥𝐼) → if(𝑥 = 𝐾, 1, 0) ∈ ℕ0)
54fmpttd 6696 . . . 4 (⊤ → (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0)
65mptru 1514 . . 3 (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0
7 eqid 2772 . . . . 5 (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) = (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0))
87mptpreima 5925 . . . 4 ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) = {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ}
9 snfi 8385 . . . . . 6 {𝐾} ∈ Fin
10 inss1 4086 . . . . . . 7 ({𝑥𝑥 = 𝐾} ∩ 𝐼) ⊆ {𝑥𝑥 = 𝐾}
11 dfrab2 4160 . . . . . . 7 {𝑥𝐼𝑥 = 𝐾} = ({𝑥𝑥 = 𝐾} ∩ 𝐼)
12 df-sn 4436 . . . . . . 7 {𝐾} = {𝑥𝑥 = 𝐾}
1310, 11, 123sstr4i 3894 . . . . . 6 {𝑥𝐼𝑥 = 𝐾} ⊆ {𝐾}
14 ssfi 8527 . . . . . 6 (({𝐾} ∈ Fin ∧ {𝑥𝐼𝑥 = 𝐾} ⊆ {𝐾}) → {𝑥𝐼𝑥 = 𝐾} ∈ Fin)
159, 13, 14mp2an 679 . . . . 5 {𝑥𝐼𝑥 = 𝐾} ∈ Fin
16 0nnn 11470 . . . . . . . . 9 ¬ 0 ∈ ℕ
17 iffalse 4353 . . . . . . . . . 10 𝑥 = 𝐾 → if(𝑥 = 𝐾, 1, 0) = 0)
1817eleq1d 2844 . . . . . . . . 9 𝑥 = 𝐾 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ ↔ 0 ∈ ℕ))
1916, 18mtbiri 319 . . . . . . . 8 𝑥 = 𝐾 → ¬ if(𝑥 = 𝐾, 1, 0) ∈ ℕ)
2019con4i 114 . . . . . . 7 (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾)
2120a1i 11 . . . . . 6 (𝑥𝐼 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾))
2221ss2rabi 3937 . . . . 5 {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥𝐼𝑥 = 𝐾}
23 ssfi 8527 . . . . 5 (({𝑥𝐼𝑥 = 𝐾} ∈ Fin ∧ {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥𝐼𝑥 = 𝐾}) → {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin)
2415, 22, 23mp2an 679 . . . 4 {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin
258, 24eqeltri 2856 . . 3 ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin
266, 25pm3.2i 463 . 2 ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin)
27 psrbag0.d . . 3 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2827psrbag 19852 . 2 (𝐼𝑉 → ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷 ↔ ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin)))
2926, 28mpbiri 250 1 (𝐼𝑉 → (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387   = wceq 1507  wtru 1508  wcel 2050  {cab 2752  {crab 3086  cin 3822  wss 3823  ifcif 4344  {csn 4435  cmpt 5002  ccnv 5400  cima 5404  wf 6178  (class class class)co 6970  𝑚 cmap 8200  Fincfn 8300  0cc0 10329  1c1 10330  cn 11433  0cn0 11701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-er 8083  df-map 8202  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-nn 11434  df-n0 11702
This theorem is referenced by:  evlslem1  20002
  Copyright terms: Public domain W3C validator