| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrbagsn | Structured version Visualization version GIF version | ||
| Description: A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| psrbag0.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Ref | Expression |
|---|---|
| psrbagsn | ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12522 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 2 | 0nn0 12521 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | ifcli 4553 | . . . . . 6 ⊢ if(𝑥 = 𝐾, 1, 0) ∈ ℕ0 |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐼) → if(𝑥 = 𝐾, 1, 0) ∈ ℕ0) |
| 5 | 4 | fmpttd 7110 | . . . 4 ⊢ (⊤ → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0) |
| 6 | 5 | mptru 1547 | . . 3 ⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 |
| 7 | eqid 2736 | . . . . 5 ⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) | |
| 8 | 7 | mptpreima 6232 | . . . 4 ⊢ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) = {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} |
| 9 | snfi 9062 | . . . . . 6 ⊢ {𝐾} ∈ Fin | |
| 10 | inss1 4217 | . . . . . . 7 ⊢ ({𝑥 ∣ 𝑥 = 𝐾} ∩ 𝐼) ⊆ {𝑥 ∣ 𝑥 = 𝐾} | |
| 11 | dfrab2 4300 | . . . . . . 7 ⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} = ({𝑥 ∣ 𝑥 = 𝐾} ∩ 𝐼) | |
| 12 | df-sn 4607 | . . . . . . 7 ⊢ {𝐾} = {𝑥 ∣ 𝑥 = 𝐾} | |
| 13 | 10, 11, 12 | 3sstr4i 4015 | . . . . . 6 ⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ⊆ {𝐾} |
| 14 | ssfi 9192 | . . . . . 6 ⊢ (({𝐾} ∈ Fin ∧ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ⊆ {𝐾}) → {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ∈ Fin) | |
| 15 | 9, 13, 14 | mp2an 692 | . . . . 5 ⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ∈ Fin |
| 16 | 0nnn 12281 | . . . . . . . . 9 ⊢ ¬ 0 ∈ ℕ | |
| 17 | iffalse 4514 | . . . . . . . . . 10 ⊢ (¬ 𝑥 = 𝐾 → if(𝑥 = 𝐾, 1, 0) = 0) | |
| 18 | 17 | eleq1d 2820 | . . . . . . . . 9 ⊢ (¬ 𝑥 = 𝐾 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ ↔ 0 ∈ ℕ)) |
| 19 | 16, 18 | mtbiri 327 | . . . . . . . 8 ⊢ (¬ 𝑥 = 𝐾 → ¬ if(𝑥 = 𝐾, 1, 0) ∈ ℕ) |
| 20 | 19 | con4i 114 | . . . . . . 7 ⊢ (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾) |
| 21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ 𝐼 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾)) |
| 22 | 21 | ss2rabi 4057 | . . . . 5 ⊢ {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} |
| 23 | ssfi 9192 | . . . . 5 ⊢ (({𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ∈ Fin ∧ {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾}) → {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin) | |
| 24 | 15, 22, 23 | mp2an 692 | . . . 4 ⊢ {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin |
| 25 | 8, 24 | eqeltri 2831 | . . 3 ⊢ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin |
| 26 | 6, 25 | pm3.2i 470 | . 2 ⊢ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin) |
| 27 | psrbag0.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 28 | 27 | psrbag 21882 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷 ↔ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin))) |
| 29 | 26, 28 | mpbiri 258 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 {cab 2714 {crab 3420 ∩ cin 3930 ⊆ wss 3931 ifcif 4505 {csn 4606 ↦ cmpt 5206 ◡ccnv 5658 “ cima 5662 ⟶wf 6532 (class class class)co 7410 ↑m cmap 8845 Fincfn 8964 0cc0 11134 1c1 11135 ℕcn 12245 ℕ0cn0 12506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-nn 12246 df-n0 12507 |
| This theorem is referenced by: evlslem1 22045 psdmplcl 22105 psdadd 22106 psdvsca 22107 psdmul 22109 psdmvr 22112 |
| Copyright terms: Public domain | W3C validator |