MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagsn Structured version   Visualization version   GIF version

Theorem psrbagsn 21252
Description: A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypothesis
Ref Expression
psrbag0.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagsn (𝐼𝑉 → (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷)
Distinct variable groups:   𝑓,𝐼,𝑥   𝑓,𝐾,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑓)   𝑉(𝑥,𝑓)

Proof of Theorem psrbagsn
StepHypRef Expression
1 1nn0 12232 . . . . . . 7 1 ∈ ℕ0
2 0nn0 12231 . . . . . . 7 0 ∈ ℕ0
31, 2ifcli 4511 . . . . . 6 if(𝑥 = 𝐾, 1, 0) ∈ ℕ0
43a1i 11 . . . . 5 ((⊤ ∧ 𝑥𝐼) → if(𝑥 = 𝐾, 1, 0) ∈ ℕ0)
54fmpttd 6983 . . . 4 (⊤ → (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0)
65mptru 1548 . . 3 (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0
7 eqid 2739 . . . . 5 (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) = (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0))
87mptpreima 6138 . . . 4 ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) = {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ}
9 snfi 8804 . . . . . 6 {𝐾} ∈ Fin
10 inss1 4167 . . . . . . 7 ({𝑥𝑥 = 𝐾} ∩ 𝐼) ⊆ {𝑥𝑥 = 𝐾}
11 dfrab2 4249 . . . . . . 7 {𝑥𝐼𝑥 = 𝐾} = ({𝑥𝑥 = 𝐾} ∩ 𝐼)
12 df-sn 4567 . . . . . . 7 {𝐾} = {𝑥𝑥 = 𝐾}
1310, 11, 123sstr4i 3968 . . . . . 6 {𝑥𝐼𝑥 = 𝐾} ⊆ {𝐾}
14 ssfi 8921 . . . . . 6 (({𝐾} ∈ Fin ∧ {𝑥𝐼𝑥 = 𝐾} ⊆ {𝐾}) → {𝑥𝐼𝑥 = 𝐾} ∈ Fin)
159, 13, 14mp2an 688 . . . . 5 {𝑥𝐼𝑥 = 𝐾} ∈ Fin
16 0nnn 11992 . . . . . . . . 9 ¬ 0 ∈ ℕ
17 iffalse 4473 . . . . . . . . . 10 𝑥 = 𝐾 → if(𝑥 = 𝐾, 1, 0) = 0)
1817eleq1d 2824 . . . . . . . . 9 𝑥 = 𝐾 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ ↔ 0 ∈ ℕ))
1916, 18mtbiri 326 . . . . . . . 8 𝑥 = 𝐾 → ¬ if(𝑥 = 𝐾, 1, 0) ∈ ℕ)
2019con4i 114 . . . . . . 7 (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾)
2120a1i 11 . . . . . 6 (𝑥𝐼 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾))
2221ss2rabi 4014 . . . . 5 {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥𝐼𝑥 = 𝐾}
23 ssfi 8921 . . . . 5 (({𝑥𝐼𝑥 = 𝐾} ∈ Fin ∧ {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥𝐼𝑥 = 𝐾}) → {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin)
2415, 22, 23mp2an 688 . . . 4 {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin
258, 24eqeltri 2836 . . 3 ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin
266, 25pm3.2i 470 . 2 ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin)
27 psrbag0.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2827psrbag 21101 . 2 (𝐼𝑉 → ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷 ↔ ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin)))
2926, 28mpbiri 257 1 (𝐼𝑉 → (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wtru 1542  wcel 2109  {cab 2716  {crab 3069  cin 3890  wss 3891  ifcif 4464  {csn 4566  cmpt 5161  ccnv 5587  cima 5591  wf 6426  (class class class)co 7268  m cmap 8589  Fincfn 8707  0cc0 10855  1c1 10856  cn 11956  0cn0 12216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-nn 11957  df-n0 12217
This theorem is referenced by:  evlslem1  21273
  Copyright terms: Public domain W3C validator