| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrbagsn | Structured version Visualization version GIF version | ||
| Description: A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| psrbag0.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Ref | Expression |
|---|---|
| psrbagsn | ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12465 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 2 | 0nn0 12464 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | ifcli 4539 | . . . . . 6 ⊢ if(𝑥 = 𝐾, 1, 0) ∈ ℕ0 |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐼) → if(𝑥 = 𝐾, 1, 0) ∈ ℕ0) |
| 5 | 4 | fmpttd 7090 | . . . 4 ⊢ (⊤ → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0) |
| 6 | 5 | mptru 1547 | . . 3 ⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 |
| 7 | eqid 2730 | . . . . 5 ⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) | |
| 8 | 7 | mptpreima 6214 | . . . 4 ⊢ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) = {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} |
| 9 | snfi 9017 | . . . . . 6 ⊢ {𝐾} ∈ Fin | |
| 10 | inss1 4203 | . . . . . . 7 ⊢ ({𝑥 ∣ 𝑥 = 𝐾} ∩ 𝐼) ⊆ {𝑥 ∣ 𝑥 = 𝐾} | |
| 11 | dfrab2 4286 | . . . . . . 7 ⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} = ({𝑥 ∣ 𝑥 = 𝐾} ∩ 𝐼) | |
| 12 | df-sn 4593 | . . . . . . 7 ⊢ {𝐾} = {𝑥 ∣ 𝑥 = 𝐾} | |
| 13 | 10, 11, 12 | 3sstr4i 4001 | . . . . . 6 ⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ⊆ {𝐾} |
| 14 | ssfi 9143 | . . . . . 6 ⊢ (({𝐾} ∈ Fin ∧ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ⊆ {𝐾}) → {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ∈ Fin) | |
| 15 | 9, 13, 14 | mp2an 692 | . . . . 5 ⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ∈ Fin |
| 16 | 0nnn 12229 | . . . . . . . . 9 ⊢ ¬ 0 ∈ ℕ | |
| 17 | iffalse 4500 | . . . . . . . . . 10 ⊢ (¬ 𝑥 = 𝐾 → if(𝑥 = 𝐾, 1, 0) = 0) | |
| 18 | 17 | eleq1d 2814 | . . . . . . . . 9 ⊢ (¬ 𝑥 = 𝐾 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ ↔ 0 ∈ ℕ)) |
| 19 | 16, 18 | mtbiri 327 | . . . . . . . 8 ⊢ (¬ 𝑥 = 𝐾 → ¬ if(𝑥 = 𝐾, 1, 0) ∈ ℕ) |
| 20 | 19 | con4i 114 | . . . . . . 7 ⊢ (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾) |
| 21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ 𝐼 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾)) |
| 22 | 21 | ss2rabi 4043 | . . . . 5 ⊢ {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} |
| 23 | ssfi 9143 | . . . . 5 ⊢ (({𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ∈ Fin ∧ {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾}) → {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin) | |
| 24 | 15, 22, 23 | mp2an 692 | . . . 4 ⊢ {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin |
| 25 | 8, 24 | eqeltri 2825 | . . 3 ⊢ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin |
| 26 | 6, 25 | pm3.2i 470 | . 2 ⊢ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin) |
| 27 | psrbag0.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 28 | 27 | psrbag 21833 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷 ↔ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin))) |
| 29 | 26, 28 | mpbiri 258 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 {cab 2708 {crab 3408 ∩ cin 3916 ⊆ wss 3917 ifcif 4491 {csn 4592 ↦ cmpt 5191 ◡ccnv 5640 “ cima 5644 ⟶wf 6510 (class class class)co 7390 ↑m cmap 8802 Fincfn 8921 0cc0 11075 1c1 11076 ℕcn 12193 ℕ0cn0 12449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-nn 12194 df-n0 12450 |
| This theorem is referenced by: evlslem1 21996 psdmplcl 22056 psdadd 22057 psdvsca 22058 psdmul 22060 psdmvr 22063 |
| Copyright terms: Public domain | W3C validator |