MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubdm Structured version   Visualization version   GIF version

Theorem lubdm 18366
Description: Domain of the least upper bound function of a poset. (Contributed by NM, 6-Sep-2018.)
Hypotheses
Ref Expression
lubfval.b 𝐵 = (Base‘𝐾)
lubfval.l = (le‘𝐾)
lubfval.u 𝑈 = (lub‘𝐾)
lubfval.p (𝜓 ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
lubfval.k (𝜑𝐾𝑉)
Assertion
Ref Expression
lubdm (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓})
Distinct variable groups:   𝑥,𝑠,𝑧,𝐵   𝑦,𝑠,𝐾,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑠)   𝜓(𝑥,𝑦,𝑧,𝑠)   𝐵(𝑦)   𝑈(𝑥,𝑦,𝑧,𝑠)   (𝑥,𝑦,𝑧,𝑠)   𝑉(𝑥,𝑦,𝑧,𝑠)

Proof of Theorem lubdm
StepHypRef Expression
1 lubfval.b . . . 4 𝐵 = (Base‘𝐾)
2 lubfval.l . . . 4 = (le‘𝐾)
3 lubfval.u . . . 4 𝑈 = (lub‘𝐾)
4 lubfval.p . . . 4 (𝜓 ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
5 lubfval.k . . . 4 (𝜑𝐾𝑉)
61, 2, 3, 4, 5lubfval 18365 . . 3 (𝜑𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
76dmeqd 5890 . 2 (𝜑 → dom 𝑈 = dom ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
8 riotaex 7371 . . . . 5 (𝑥𝐵 𝜓) ∈ V
9 eqid 2736 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓))
108, 9dmmpti 6687 . . . 4 dom (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) = 𝒫 𝐵
1110ineq2i 4197 . . 3 ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓))) = ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ 𝒫 𝐵)
12 dmres 6004 . . 3 dom ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}) = ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)))
13 dfrab2 4300 . . 3 {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓} = ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ 𝒫 𝐵)
1411, 12, 133eqtr4i 2769 . 2 dom ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}) = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓}
157, 14eqtrdi 2787 1 (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2714  wral 3052  ∃!wreu 3362  {crab 3420  cin 3930  𝒫 cpw 4580   class class class wbr 5124  cmpt 5206  dom cdm 5659  cres 5661  cfv 6536  crio 7366  Basecbs 17233  lecple 17283  lubclub 18326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-lub 18361
This theorem is referenced by:  lubeldm  18368  xrsclat  33008  isclatd  48924
  Copyright terms: Public domain W3C validator