MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubdm Structured version   Visualization version   GIF version

Theorem lubdm 17588
Description: Domain of the least upper bound function of a poset. (Contributed by NM, 6-Sep-2018.)
Hypotheses
Ref Expression
lubfval.b 𝐵 = (Base‘𝐾)
lubfval.l = (le‘𝐾)
lubfval.u 𝑈 = (lub‘𝐾)
lubfval.p (𝜓 ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
lubfval.k (𝜑𝐾𝑉)
Assertion
Ref Expression
lubdm (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓})
Distinct variable groups:   𝑥,𝑠,𝑧,𝐵   𝑦,𝑠,𝐾,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑠)   𝜓(𝑥,𝑦,𝑧,𝑠)   𝐵(𝑦)   𝑈(𝑥,𝑦,𝑧,𝑠)   (𝑥,𝑦,𝑧,𝑠)   𝑉(𝑥,𝑦,𝑧,𝑠)

Proof of Theorem lubdm
StepHypRef Expression
1 lubfval.b . . . 4 𝐵 = (Base‘𝐾)
2 lubfval.l . . . 4 = (le‘𝐾)
3 lubfval.u . . . 4 𝑈 = (lub‘𝐾)
4 lubfval.p . . . 4 (𝜓 ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
5 lubfval.k . . . 4 (𝜑𝐾𝑉)
61, 2, 3, 4, 5lubfval 17587 . . 3 (𝜑𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
76dmeqd 5773 . 2 (𝜑 → dom 𝑈 = dom ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
8 riotaex 7117 . . . . 5 (𝑥𝐵 𝜓) ∈ V
9 eqid 2821 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓))
108, 9dmmpti 6491 . . . 4 dom (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) = 𝒫 𝐵
1110ineq2i 4185 . . 3 ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓))) = ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ 𝒫 𝐵)
12 dmres 5874 . . 3 dom ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}) = ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)))
13 dfrab2 4278 . . 3 {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓} = ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ 𝒫 𝐵)
1411, 12, 133eqtr4i 2854 . 2 dom ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}) = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓}
157, 14syl6eq 2872 1 (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {cab 2799  wral 3138  ∃!wreu 3140  {crab 3142  cin 3934  𝒫 cpw 4538   class class class wbr 5065  cmpt 5145  dom cdm 5554  cres 5556  cfv 6354  crio 7112  Basecbs 16482  lecple 16571  lubclub 17551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-lub 17583
This theorem is referenced by:  lubeldm  17590  xrsclat  30667
  Copyright terms: Public domain W3C validator