MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubdm Structured version   Visualization version   GIF version

Theorem lubdm 18158
Description: Domain of the least upper bound function of a poset. (Contributed by NM, 6-Sep-2018.)
Hypotheses
Ref Expression
lubfval.b 𝐵 = (Base‘𝐾)
lubfval.l = (le‘𝐾)
lubfval.u 𝑈 = (lub‘𝐾)
lubfval.p (𝜓 ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
lubfval.k (𝜑𝐾𝑉)
Assertion
Ref Expression
lubdm (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓})
Distinct variable groups:   𝑥,𝑠,𝑧,𝐵   𝑦,𝑠,𝐾,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑠)   𝜓(𝑥,𝑦,𝑧,𝑠)   𝐵(𝑦)   𝑈(𝑥,𝑦,𝑧,𝑠)   (𝑥,𝑦,𝑧,𝑠)   𝑉(𝑥,𝑦,𝑧,𝑠)

Proof of Theorem lubdm
StepHypRef Expression
1 lubfval.b . . . 4 𝐵 = (Base‘𝐾)
2 lubfval.l . . . 4 = (le‘𝐾)
3 lubfval.u . . . 4 𝑈 = (lub‘𝐾)
4 lubfval.p . . . 4 (𝜓 ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
5 lubfval.k . . . 4 (𝜑𝐾𝑉)
61, 2, 3, 4, 5lubfval 18157 . . 3 (𝜑𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
76dmeqd 5841 . 2 (𝜑 → dom 𝑈 = dom ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
8 riotaex 7290 . . . . 5 (𝑥𝐵 𝜓) ∈ V
9 eqid 2736 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓))
108, 9dmmpti 6622 . . . 4 dom (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) = 𝒫 𝐵
1110ineq2i 4155 . . 3 ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓))) = ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ 𝒫 𝐵)
12 dmres 5939 . . 3 dom ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}) = ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)))
13 dfrab2 4256 . . 3 {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓} = ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ 𝒫 𝐵)
1411, 12, 133eqtr4i 2774 . 2 dom ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}) = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓}
157, 14eqtrdi 2792 1 (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  {cab 2713  wral 3061  ∃!wreu 3347  {crab 3403  cin 3896  𝒫 cpw 4546   class class class wbr 5089  cmpt 5172  dom cdm 5614  cres 5616  cfv 6473  crio 7285  Basecbs 17001  lecple 17058  lubclub 18116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-lub 18153
This theorem is referenced by:  lubeldm  18160  xrsclat  31517  isclatd  46609
  Copyright terms: Public domain W3C validator