Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lubdm | Structured version Visualization version GIF version |
Description: Domain of the least upper bound function of a poset. (Contributed by NM, 6-Sep-2018.) |
Ref | Expression |
---|---|
lubfval.b | ⊢ 𝐵 = (Base‘𝐾) |
lubfval.l | ⊢ ≤ = (le‘𝐾) |
lubfval.u | ⊢ 𝑈 = (lub‘𝐾) |
lubfval.p | ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
lubfval.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
Ref | Expression |
---|---|
lubdm | ⊢ (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lubfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | lubfval.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
4 | lubfval.p | . . . 4 ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) | |
5 | lubfval.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
6 | 1, 2, 3, 4, 5 | lubfval 18157 | . . 3 ⊢ (𝜑 → 𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) |
7 | 6 | dmeqd 5841 | . 2 ⊢ (𝜑 → dom 𝑈 = dom ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) |
8 | riotaex 7290 | . . . . 5 ⊢ (℩𝑥 ∈ 𝐵 𝜓) ∈ V | |
9 | eqid 2736 | . . . . 5 ⊢ (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) = (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) | |
10 | 8, 9 | dmmpti 6622 | . . . 4 ⊢ dom (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) = 𝒫 𝐵 |
11 | 10 | ineq2i 4155 | . . 3 ⊢ ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓))) = ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ 𝒫 𝐵) |
12 | dmres 5939 | . . 3 ⊢ dom ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) = ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓))) | |
13 | dfrab2 4256 | . . 3 ⊢ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓} = ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ 𝒫 𝐵) | |
14 | 11, 12, 13 | 3eqtr4i 2774 | . 2 ⊢ dom ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓} |
15 | 7, 14 | eqtrdi 2792 | 1 ⊢ (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {cab 2713 ∀wral 3061 ∃!wreu 3347 {crab 3403 ∩ cin 3896 𝒫 cpw 4546 class class class wbr 5089 ↦ cmpt 5172 dom cdm 5614 ↾ cres 5616 ‘cfv 6473 ℩crio 7285 Basecbs 17001 lecple 17058 lubclub 18116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-lub 18153 |
This theorem is referenced by: lubeldm 18160 xrsclat 31517 isclatd 46609 |
Copyright terms: Public domain | W3C validator |