![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lubdm | Structured version Visualization version GIF version |
Description: Domain of the least upper bound function of a poset. (Contributed by NM, 6-Sep-2018.) |
Ref | Expression |
---|---|
lubfval.b | ⊢ 𝐵 = (Base‘𝐾) |
lubfval.l | ⊢ ≤ = (le‘𝐾) |
lubfval.u | ⊢ 𝑈 = (lub‘𝐾) |
lubfval.p | ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
lubfval.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
Ref | Expression |
---|---|
lubdm | ⊢ (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lubfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | lubfval.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
4 | lubfval.p | . . . 4 ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) | |
5 | lubfval.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
6 | 1, 2, 3, 4, 5 | lubfval 18377 | . . 3 ⊢ (𝜑 → 𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) |
7 | 6 | dmeqd 5914 | . 2 ⊢ (𝜑 → dom 𝑈 = dom ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) |
8 | riotaex 7386 | . . . . 5 ⊢ (℩𝑥 ∈ 𝐵 𝜓) ∈ V | |
9 | eqid 2726 | . . . . 5 ⊢ (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) = (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) | |
10 | 8, 9 | dmmpti 6707 | . . . 4 ⊢ dom (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) = 𝒫 𝐵 |
11 | 10 | ineq2i 4210 | . . 3 ⊢ ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓))) = ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ 𝒫 𝐵) |
12 | dmres 6023 | . . 3 ⊢ dom ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) = ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓))) | |
13 | dfrab2 4312 | . . 3 ⊢ {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓} = ({𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓} ∩ 𝒫 𝐵) | |
14 | 11, 12, 13 | 3eqtr4i 2764 | . 2 ⊢ dom ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓} |
15 | 7, 14 | eqtrdi 2782 | 1 ⊢ (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {cab 2703 ∀wral 3051 ∃!wreu 3362 {crab 3419 ∩ cin 3946 𝒫 cpw 4607 class class class wbr 5155 ↦ cmpt 5238 dom cdm 5684 ↾ cres 5686 ‘cfv 6556 ℩crio 7381 Basecbs 17215 lecple 17275 lubclub 18336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-id 5582 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-lub 18373 |
This theorem is referenced by: lubeldm 18380 xrsclat 32893 isclatd 48327 |
Copyright terms: Public domain | W3C validator |