MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubdm Structured version   Visualization version   GIF version

Theorem lubdm 18378
Description: Domain of the least upper bound function of a poset. (Contributed by NM, 6-Sep-2018.)
Hypotheses
Ref Expression
lubfval.b 𝐵 = (Base‘𝐾)
lubfval.l = (le‘𝐾)
lubfval.u 𝑈 = (lub‘𝐾)
lubfval.p (𝜓 ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
lubfval.k (𝜑𝐾𝑉)
Assertion
Ref Expression
lubdm (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓})
Distinct variable groups:   𝑥,𝑠,𝑧,𝐵   𝑦,𝑠,𝐾,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑠)   𝜓(𝑥,𝑦,𝑧,𝑠)   𝐵(𝑦)   𝑈(𝑥,𝑦,𝑧,𝑠)   (𝑥,𝑦,𝑧,𝑠)   𝑉(𝑥,𝑦,𝑧,𝑠)

Proof of Theorem lubdm
StepHypRef Expression
1 lubfval.b . . . 4 𝐵 = (Base‘𝐾)
2 lubfval.l . . . 4 = (le‘𝐾)
3 lubfval.u . . . 4 𝑈 = (lub‘𝐾)
4 lubfval.p . . . 4 (𝜓 ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
5 lubfval.k . . . 4 (𝜑𝐾𝑉)
61, 2, 3, 4, 5lubfval 18377 . . 3 (𝜑𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
76dmeqd 5914 . 2 (𝜑 → dom 𝑈 = dom ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
8 riotaex 7386 . . . . 5 (𝑥𝐵 𝜓) ∈ V
9 eqid 2726 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓))
108, 9dmmpti 6707 . . . 4 dom (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) = 𝒫 𝐵
1110ineq2i 4210 . . 3 ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓))) = ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ 𝒫 𝐵)
12 dmres 6023 . . 3 dom ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}) = ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ dom (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)))
13 dfrab2 4312 . . 3 {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓} = ({𝑠 ∣ ∃!𝑥𝐵 𝜓} ∩ 𝒫 𝐵)
1411, 12, 133eqtr4i 2764 . 2 dom ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}) = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓}
157, 14eqtrdi 2782 1 (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥𝐵 𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  {cab 2703  wral 3051  ∃!wreu 3362  {crab 3419  cin 3946  𝒫 cpw 4607   class class class wbr 5155  cmpt 5238  dom cdm 5684  cres 5686  cfv 6556  crio 7381  Basecbs 17215  lecple 17275  lubclub 18336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-id 5582  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-lub 18373
This theorem is referenced by:  lubeldm  18380  xrsclat  32893  isclatd  48327
  Copyright terms: Public domain W3C validator