![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lubdm | Structured version Visualization version GIF version |
Description: Domain of the least upper bound function of a poset. (Contributed by NM, 6-Sep-2018.) |
Ref | Expression |
---|---|
lubfval.b | β’ π΅ = (BaseβπΎ) |
lubfval.l | β’ β€ = (leβπΎ) |
lubfval.u | β’ π = (lubβπΎ) |
lubfval.p | β’ (π β (βπ¦ β π π¦ β€ π₯ β§ βπ§ β π΅ (βπ¦ β π π¦ β€ π§ β π₯ β€ π§))) |
lubfval.k | β’ (π β πΎ β π) |
Ref | Expression |
---|---|
lubdm | β’ (π β dom π = {π β π« π΅ β£ β!π₯ β π΅ π}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubfval.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | lubfval.l | . . . 4 β’ β€ = (leβπΎ) | |
3 | lubfval.u | . . . 4 β’ π = (lubβπΎ) | |
4 | lubfval.p | . . . 4 β’ (π β (βπ¦ β π π¦ β€ π₯ β§ βπ§ β π΅ (βπ¦ β π π¦ β€ π§ β π₯ β€ π§))) | |
5 | lubfval.k | . . . 4 β’ (π β πΎ β π) | |
6 | 1, 2, 3, 4, 5 | lubfval 18302 | . . 3 β’ (π β π = ((π β π« π΅ β¦ (β©π₯ β π΅ π)) βΎ {π β£ β!π₯ β π΅ π})) |
7 | 6 | dmeqd 5905 | . 2 β’ (π β dom π = dom ((π β π« π΅ β¦ (β©π₯ β π΅ π)) βΎ {π β£ β!π₯ β π΅ π})) |
8 | riotaex 7368 | . . . . 5 β’ (β©π₯ β π΅ π) β V | |
9 | eqid 2732 | . . . . 5 β’ (π β π« π΅ β¦ (β©π₯ β π΅ π)) = (π β π« π΅ β¦ (β©π₯ β π΅ π)) | |
10 | 8, 9 | dmmpti 6694 | . . . 4 β’ dom (π β π« π΅ β¦ (β©π₯ β π΅ π)) = π« π΅ |
11 | 10 | ineq2i 4209 | . . 3 β’ ({π β£ β!π₯ β π΅ π} β© dom (π β π« π΅ β¦ (β©π₯ β π΅ π))) = ({π β£ β!π₯ β π΅ π} β© π« π΅) |
12 | dmres 6003 | . . 3 β’ dom ((π β π« π΅ β¦ (β©π₯ β π΅ π)) βΎ {π β£ β!π₯ β π΅ π}) = ({π β£ β!π₯ β π΅ π} β© dom (π β π« π΅ β¦ (β©π₯ β π΅ π))) | |
13 | dfrab2 4310 | . . 3 β’ {π β π« π΅ β£ β!π₯ β π΅ π} = ({π β£ β!π₯ β π΅ π} β© π« π΅) | |
14 | 11, 12, 13 | 3eqtr4i 2770 | . 2 β’ dom ((π β π« π΅ β¦ (β©π₯ β π΅ π)) βΎ {π β£ β!π₯ β π΅ π}) = {π β π« π΅ β£ β!π₯ β π΅ π} |
15 | 7, 14 | eqtrdi 2788 | 1 β’ (π β dom π = {π β π« π΅ β£ β!π₯ β π΅ π}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 {cab 2709 βwral 3061 β!wreu 3374 {crab 3432 β© cin 3947 π« cpw 4602 class class class wbr 5148 β¦ cmpt 5231 dom cdm 5676 βΎ cres 5678 βcfv 6543 β©crio 7363 Basecbs 17143 lecple 17203 lubclub 18261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-lub 18298 |
This theorem is referenced by: lubeldm 18305 xrsclat 32176 isclatd 47598 |
Copyright terms: Public domain | W3C validator |