MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpred3 Structured version   Visualization version   GIF version

Theorem dfpred3 6300
Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.)
Hypothesis
Ref Expression
dfpred2.1 𝑋 ∈ V
Assertion
Ref Expression
dfpred3 Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋}
Distinct variable groups:   𝑦,𝑅   𝑦,𝑋   𝑦,𝐴

Proof of Theorem dfpred3
StepHypRef Expression
1 incom 4197 . 2 (𝐴 ∩ {𝑦𝑦𝑅𝑋}) = ({𝑦𝑦𝑅𝑋} ∩ 𝐴)
2 dfpred2.1 . . 3 𝑋 ∈ V
32dfpred2 6299 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦𝑦𝑅𝑋})
4 dfrab2 4306 . 2 {𝑦𝐴𝑦𝑅𝑋} = ({𝑦𝑦𝑅𝑋} ∩ 𝐴)
51, 3, 43eqtr4i 2769 1 Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  {cab 2708  {crab 3431  Vcvv 3473  cin 3943   class class class wbr 5141  Predcpred 6288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-br 5142  df-opab 5204  df-xp 5675  df-cnv 5677  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289
This theorem is referenced by:  dfpred3g  6301  frpomin2  6331  fnrelpredd  33923  nummin  33925
  Copyright terms: Public domain W3C validator