MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpred3 Structured version   Visualization version   GIF version

Theorem dfpred3 6265
Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.)
Hypothesis
Ref Expression
dfpred2.1 𝑋 ∈ V
Assertion
Ref Expression
dfpred3 Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋}
Distinct variable groups:   𝑦,𝑅   𝑦,𝑋   𝑦,𝐴

Proof of Theorem dfpred3
StepHypRef Expression
1 incom 4162 . 2 (𝐴 ∩ {𝑦𝑦𝑅𝑋}) = ({𝑦𝑦𝑅𝑋} ∩ 𝐴)
2 dfpred2.1 . . 3 𝑋 ∈ V
32dfpred2 6264 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦𝑦𝑅𝑋})
4 dfrab2 4271 . 2 {𝑦𝐴𝑦𝑅𝑋} = ({𝑦𝑦𝑅𝑋} ∩ 𝐴)
51, 3, 43eqtr4i 2771 1 Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  {cab 2710  {crab 3406  Vcvv 3444  cin 3910   class class class wbr 5106  Predcpred 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-xp 5640  df-cnv 5642  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254
This theorem is referenced by:  dfpred3g  6266  frpomin2  6296  fnrelpredd  33750  nummin  33752
  Copyright terms: Public domain W3C validator