![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfpred3 | Structured version Visualization version GIF version |
Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.) |
Ref | Expression |
---|---|
dfpred2.1 | ⊢ 𝑋 ∈ V |
Ref | Expression |
---|---|
dfpred3 | ⊢ Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4201 | . 2 ⊢ (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋}) = ({𝑦 ∣ 𝑦𝑅𝑋} ∩ 𝐴) | |
2 | dfpred2.1 | . . 3 ⊢ 𝑋 ∈ V | |
3 | 2 | dfpred2 6318 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋}) |
4 | dfrab2 4311 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} = ({𝑦 ∣ 𝑦𝑅𝑋} ∩ 𝐴) | |
5 | 1, 3, 4 | 3eqtr4i 2765 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 {cab 2704 {crab 3428 Vcvv 3471 ∩ cin 3946 class class class wbr 5150 Predcpred 6307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5151 df-opab 5213 df-xp 5686 df-cnv 5688 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 |
This theorem is referenced by: dfpred3g 6320 frpomin2 6350 fnrelpredd 34717 nummin 34719 |
Copyright terms: Public domain | W3C validator |