![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfpred3 | Structured version Visualization version GIF version |
Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.) |
Ref | Expression |
---|---|
dfpred2.1 | ⊢ 𝑋 ∈ V |
Ref | Expression |
---|---|
dfpred3 | ⊢ Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4230 | . 2 ⊢ (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋}) = ({𝑦 ∣ 𝑦𝑅𝑋} ∩ 𝐴) | |
2 | dfpred2.1 | . . 3 ⊢ 𝑋 ∈ V | |
3 | 2 | dfpred2 6342 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋}) |
4 | dfrab2 4339 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} = ({𝑦 ∣ 𝑦𝑅𝑋} ∩ 𝐴) | |
5 | 1, 3, 4 | 3eqtr4i 2778 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 {cab 2717 {crab 3443 Vcvv 3488 ∩ cin 3975 class class class wbr 5166 Predcpred 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 |
This theorem is referenced by: dfpred3g 6344 frpomin2 6373 fnrelpredd 35065 nummin 35067 |
Copyright terms: Public domain | W3C validator |