| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfpred3 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.) |
| Ref | Expression |
|---|---|
| dfpred2.1 | ⊢ 𝑋 ∈ V |
| Ref | Expression |
|---|---|
| dfpred3 | ⊢ Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4154 | . 2 ⊢ (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋}) = ({𝑦 ∣ 𝑦𝑅𝑋} ∩ 𝐴) | |
| 2 | dfpred2.1 | . . 3 ⊢ 𝑋 ∈ V | |
| 3 | 2 | dfpred2 6253 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋}) |
| 4 | dfrab2 4265 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} = ({𝑦 ∣ 𝑦𝑅𝑋} ∩ 𝐴) | |
| 5 | 1, 3, 4 | 3eqtr4i 2764 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 {crab 3395 Vcvv 3436 ∩ cin 3896 class class class wbr 5086 Predcpred 6242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 |
| This theorem is referenced by: dfpred3g 6255 frpomin2 6283 fnrelpredd 35094 nummin 35096 |
| Copyright terms: Public domain | W3C validator |