![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfpred3 | Structured version Visualization version GIF version |
Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.) |
Ref | Expression |
---|---|
dfpred2.1 | ⊢ 𝑋 ∈ V |
Ref | Expression |
---|---|
dfpred3 | ⊢ Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4197 | . 2 ⊢ (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋}) = ({𝑦 ∣ 𝑦𝑅𝑋} ∩ 𝐴) | |
2 | dfpred2.1 | . . 3 ⊢ 𝑋 ∈ V | |
3 | 2 | dfpred2 6299 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋}) |
4 | dfrab2 4306 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} = ({𝑦 ∣ 𝑦𝑅𝑋} ∩ 𝐴) | |
5 | 1, 3, 4 | 3eqtr4i 2769 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 {cab 2708 {crab 3431 Vcvv 3473 ∩ cin 3943 class class class wbr 5141 Predcpred 6288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-br 5142 df-opab 5204 df-xp 5675 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 |
This theorem is referenced by: dfpred3g 6301 frpomin2 6331 fnrelpredd 33923 nummin 33925 |
Copyright terms: Public domain | W3C validator |