MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpred3 Structured version   Visualization version   GIF version

Theorem dfpred3 6306
Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.)
Hypothesis
Ref Expression
dfpred2.1 𝑋 ∈ V
Assertion
Ref Expression
dfpred3 Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋}
Distinct variable groups:   𝑦,𝑅   𝑦,𝑋   𝑦,𝐴

Proof of Theorem dfpred3
StepHypRef Expression
1 incom 4189 . 2 (𝐴 ∩ {𝑦𝑦𝑅𝑋}) = ({𝑦𝑦𝑅𝑋} ∩ 𝐴)
2 dfpred2.1 . . 3 𝑋 ∈ V
32dfpred2 6305 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦𝑦𝑅𝑋})
4 dfrab2 4300 . 2 {𝑦𝐴𝑦𝑅𝑋} = ({𝑦𝑦𝑅𝑋} ∩ 𝐴)
51, 3, 43eqtr4i 2769 1 Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2714  {crab 3420  Vcvv 3464  cin 3930   class class class wbr 5124  Predcpred 6294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295
This theorem is referenced by:  dfpred3g  6307  frpomin2  6335  fnrelpredd  35125  nummin  35127
  Copyright terms: Public domain W3C validator