Step | Hyp | Ref
| Expression |
1 | | nnex 11979 |
. . . . 5
⊢ ℕ
∈ V |
2 | | indf1ofs 31994 |
. . . . 5
⊢ (ℕ
∈ V → ((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ
∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑m ℕ)
∣ (◡𝑓 “ {1}) ∈ Fin}) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢
((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩
Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑m ℕ)
∣ (◡𝑓 “ {1}) ∈ Fin} |
4 | | incom 4135 |
. . . . . . 7
⊢ (({0, 1}
↑m ℕ) ∩ {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin}) = ({𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩ ({0, 1}
↑m ℕ)) |
5 | | eulerpart.r |
. . . . . . . 8
⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin} |
6 | 5 | ineq2i 4143 |
. . . . . . 7
⊢ (({0, 1}
↑m ℕ) ∩ 𝑅) = (({0, 1} ↑m ℕ)
∩ {𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin}) |
7 | | dfrab2 4244 |
. . . . . . 7
⊢ {𝑓 ∈ ({0, 1}
↑m ℕ) ∣ (◡𝑓 “ ℕ) ∈ Fin} = ({𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩ ({0, 1}
↑m ℕ)) |
8 | 4, 6, 7 | 3eqtr4i 2776 |
. . . . . 6
⊢ (({0, 1}
↑m ℕ) ∩ 𝑅) = {𝑓 ∈ ({0, 1} ↑m ℕ)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
9 | | elmapfun 8654 |
. . . . . . . . 9
⊢ (𝑓 ∈ ({0, 1}
↑m ℕ) → Fun 𝑓) |
10 | | elmapi 8637 |
. . . . . . . . . 10
⊢ (𝑓 ∈ ({0, 1}
↑m ℕ) → 𝑓:ℕ⟶{0, 1}) |
11 | 10 | frnd 6608 |
. . . . . . . . 9
⊢ (𝑓 ∈ ({0, 1}
↑m ℕ) → ran 𝑓 ⊆ {0, 1}) |
12 | | fimacnvinrn2 6950 |
. . . . . . . . . 10
⊢ ((Fun
𝑓 ∧ ran 𝑓 ⊆ {0, 1}) → (◡𝑓 “ ℕ) = (◡𝑓 “ (ℕ ∩ {0,
1}))) |
13 | | df-pr 4564 |
. . . . . . . . . . . . . 14
⊢ {0, 1} =
({0} ∪ {1}) |
14 | 13 | ineq2i 4143 |
. . . . . . . . . . . . 13
⊢ (ℕ
∩ {0, 1}) = (ℕ ∩ ({0} ∪ {1})) |
15 | | indi 4207 |
. . . . . . . . . . . . 13
⊢ (ℕ
∩ ({0} ∪ {1})) = ((ℕ ∩ {0}) ∪ (ℕ ∩
{1})) |
16 | | 0nnn 12009 |
. . . . . . . . . . . . . . 15
⊢ ¬ 0
∈ ℕ |
17 | | disjsn 4647 |
. . . . . . . . . . . . . . 15
⊢ ((ℕ
∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ) |
18 | 16, 17 | mpbir 230 |
. . . . . . . . . . . . . 14
⊢ (ℕ
∩ {0}) = ∅ |
19 | | 1nn 11984 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℕ |
20 | | 1ex 10971 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
V |
21 | 20 | snss 4719 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
ℕ ↔ {1} ⊆ ℕ) |
22 | 19, 21 | mpbi 229 |
. . . . . . . . . . . . . . . 16
⊢ {1}
⊆ ℕ |
23 | | dfss 3905 |
. . . . . . . . . . . . . . . 16
⊢ ({1}
⊆ ℕ ↔ {1} = ({1} ∩ ℕ)) |
24 | 22, 23 | mpbi 229 |
. . . . . . . . . . . . . . 15
⊢ {1} =
({1} ∩ ℕ) |
25 | | incom 4135 |
. . . . . . . . . . . . . . 15
⊢ ({1}
∩ ℕ) = (ℕ ∩ {1}) |
26 | 24, 25 | eqtr2i 2767 |
. . . . . . . . . . . . . 14
⊢ (ℕ
∩ {1}) = {1} |
27 | 18, 26 | uneq12i 4095 |
. . . . . . . . . . . . 13
⊢ ((ℕ
∩ {0}) ∪ (ℕ ∩ {1})) = (∅ ∪ {1}) |
28 | 14, 15, 27 | 3eqtri 2770 |
. . . . . . . . . . . 12
⊢ (ℕ
∩ {0, 1}) = (∅ ∪ {1}) |
29 | | uncom 4087 |
. . . . . . . . . . . 12
⊢ (∅
∪ {1}) = ({1} ∪ ∅) |
30 | | un0 4324 |
. . . . . . . . . . . 12
⊢ ({1}
∪ ∅) = {1} |
31 | 28, 29, 30 | 3eqtri 2770 |
. . . . . . . . . . 11
⊢ (ℕ
∩ {0, 1}) = {1} |
32 | 31 | imaeq2i 5967 |
. . . . . . . . . 10
⊢ (◡𝑓 “ (ℕ ∩ {0, 1})) = (◡𝑓 “ {1}) |
33 | 12, 32 | eqtrdi 2794 |
. . . . . . . . 9
⊢ ((Fun
𝑓 ∧ ran 𝑓 ⊆ {0, 1}) → (◡𝑓 “ ℕ) = (◡𝑓 “ {1})) |
34 | 9, 11, 33 | syl2anc 584 |
. . . . . . . 8
⊢ (𝑓 ∈ ({0, 1}
↑m ℕ) → (◡𝑓 “ ℕ) = (◡𝑓 “ {1})) |
35 | 34 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑓 ∈ ({0, 1}
↑m ℕ) → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝑓 “ {1}) ∈ Fin)) |
36 | 35 | rabbiia 3407 |
. . . . . 6
⊢ {𝑓 ∈ ({0, 1}
↑m ℕ) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ ({0, 1}
↑m ℕ) ∣ (◡𝑓 “ {1}) ∈ Fin} |
37 | 8, 36 | eqtr2i 2767 |
. . . . 5
⊢ {𝑓 ∈ ({0, 1}
↑m ℕ) ∣ (◡𝑓 “ {1}) ∈ Fin} = (({0, 1}
↑m ℕ) ∩ 𝑅) |
38 | | f1oeq3 6706 |
. . . . 5
⊢ ({𝑓 ∈ ({0, 1}
↑m ℕ) ∣ (◡𝑓 “ {1}) ∈ Fin} = (({0, 1}
↑m ℕ) ∩ 𝑅) → (((𝟭‘ℕ) ↾
Fin):(𝒫 ℕ ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑m ℕ)
∣ (◡𝑓 “ {1}) ∈ Fin} ↔
((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩
Fin)–1-1-onto→(({0, 1} ↑m ℕ) ∩
𝑅))) |
39 | 37, 38 | ax-mp 5 |
. . . 4
⊢
(((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩
Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑m ℕ)
∣ (◡𝑓 “ {1}) ∈ Fin} ↔
((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩
Fin)–1-1-onto→(({0, 1} ↑m ℕ) ∩
𝑅)) |
40 | 3, 39 | mpbi 229 |
. . 3
⊢
((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩
Fin)–1-1-onto→(({0, 1} ↑m ℕ) ∩
𝑅) |
41 | | eulerpart.j |
. . . . . . 7
⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
42 | | eulerpart.f |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) |
43 | 41, 42 | oddpwdc 32321 |
. . . . . 6
⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ |
44 | | f1opwfi 9123 |
. . . . . 6
⊢ (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → (𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin)
↦ (𝐹 “ 𝑎)):(𝒫 (𝐽 × ℕ0) ∩
Fin)–1-1-onto→(𝒫 ℕ ∩
Fin)) |
45 | 43, 44 | ax-mp 5 |
. . . . 5
⊢ (𝑎 ∈ (𝒫 (𝐽 × ℕ0)
∩ Fin) ↦ (𝐹
“ 𝑎)):(𝒫
(𝐽 ×
ℕ0) ∩ Fin)–1-1-onto→(𝒫 ℕ ∩ Fin) |
46 | | eulerpart.p |
. . . . . . . 8
⊢ 𝑃 = {𝑓 ∈ (ℕ0
↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑓‘𝑘) · 𝑘) = 𝑁)} |
47 | | eulerpart.o |
. . . . . . . 8
⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
48 | | eulerpart.d |
. . . . . . . 8
⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
49 | | eulerpart.h |
. . . . . . . 8
⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m 𝐽)
∣ (𝑟 supp ∅)
∈ Fin} |
50 | | eulerpart.m |
. . . . . . . 8
⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
51 | 46, 47, 48, 41, 42, 49, 50 | eulerpartlem1 32334 |
. . . . . . 7
⊢ 𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩
Fin) |
52 | | bitsf1o 16152 |
. . . . . . . . . . . . . 14
⊢ (bits
↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩
Fin) |
53 | 52 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (bits ↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩
Fin)) |
54 | 41, 1 | rabex2 5258 |
. . . . . . . . . . . . . 14
⊢ 𝐽 ∈ V |
55 | 54 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ 𝐽 ∈
V) |
56 | | nn0ex 12239 |
. . . . . . . . . . . . . 14
⊢
ℕ0 ∈ V |
57 | 56 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ ℕ0 ∈ V) |
58 | 56 | pwex 5303 |
. . . . . . . . . . . . . . 15
⊢ 𝒫
ℕ0 ∈ V |
59 | 58 | inex1 5241 |
. . . . . . . . . . . . . 14
⊢
(𝒫 ℕ0 ∩ Fin) ∈ V |
60 | 59 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (𝒫 ℕ0 ∩ Fin) ∈ V) |
61 | | 0nn0 12248 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℕ0 |
62 | 61 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ 0 ∈ ℕ0) |
63 | | fvres 6793 |
. . . . . . . . . . . . . . 15
⊢ (0 ∈
ℕ0 → ((bits ↾ ℕ0)‘0) =
(bits‘0)) |
64 | 61, 63 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((bits
↾ ℕ0)‘0) = (bits‘0) |
65 | | 0bits 16146 |
. . . . . . . . . . . . . 14
⊢
(bits‘0) = ∅ |
66 | 64, 65 | eqtr2i 2767 |
. . . . . . . . . . . . 13
⊢ ∅ =
((bits ↾ ℕ0)‘0) |
67 | | elmapi 8637 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ (ℕ0
↑m 𝐽)
→ 𝑓:𝐽⟶ℕ0) |
68 | | frnnn0supp 12289 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ V ∧ 𝑓:𝐽⟶ℕ0) → (𝑓 supp 0) = (◡𝑓 “ ℕ)) |
69 | 54, 67, 68 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ (ℕ0
↑m 𝐽)
→ (𝑓 supp 0) = (◡𝑓 “ ℕ)) |
70 | 69 | eleq1d 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ (ℕ0
↑m 𝐽)
→ ((𝑓 supp 0) ∈
Fin ↔ (◡𝑓 “ ℕ) ∈
Fin)) |
71 | 70 | rabbiia 3407 |
. . . . . . . . . . . . . 14
⊢ {𝑓 ∈ (ℕ0
↑m 𝐽)
∣ (𝑓 supp 0) ∈
Fin} = {𝑓 ∈
(ℕ0 ↑m 𝐽) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
72 | | elmapfun 8654 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ (ℕ0
↑m 𝐽)
→ Fun 𝑓) |
73 | | vex 3436 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑓 ∈ V |
74 | | funisfsupp 9133 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
𝑓 ∧ 𝑓 ∈ V ∧ 0 ∈ ℕ0)
→ (𝑓 finSupp 0 ↔
(𝑓 supp 0) ∈
Fin)) |
75 | 73, 61, 74 | mp3an23 1452 |
. . . . . . . . . . . . . . . 16
⊢ (Fun
𝑓 → (𝑓 finSupp 0 ↔ (𝑓 supp 0) ∈
Fin)) |
76 | 72, 75 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ (ℕ0
↑m 𝐽)
→ (𝑓 finSupp 0 ↔
(𝑓 supp 0) ∈
Fin)) |
77 | 76 | rabbiia 3407 |
. . . . . . . . . . . . . 14
⊢ {𝑓 ∈ (ℕ0
↑m 𝐽)
∣ 𝑓 finSupp 0} =
{𝑓 ∈
(ℕ0 ↑m 𝐽) ∣ (𝑓 supp 0) ∈ Fin} |
78 | | incom 4135 |
. . . . . . . . . . . . . . 15
⊢ ({𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩
(ℕ0 ↑m 𝐽)) = ((ℕ0
↑m 𝐽) ∩
{𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin}) |
79 | | dfrab2 4244 |
. . . . . . . . . . . . . . 15
⊢ {𝑓 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑓 “ ℕ) ∈ Fin} = ({𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩
(ℕ0 ↑m 𝐽)) |
80 | 5 | ineq2i 4143 |
. . . . . . . . . . . . . . 15
⊢
((ℕ0 ↑m 𝐽) ∩ 𝑅) = ((ℕ0 ↑m
𝐽) ∩ {𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin}) |
81 | 78, 79, 80 | 3eqtr4ri 2777 |
. . . . . . . . . . . . . 14
⊢
((ℕ0 ↑m 𝐽) ∩ 𝑅) = {𝑓 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
82 | 71, 77, 81 | 3eqtr4ri 2777 |
. . . . . . . . . . . . 13
⊢
((ℕ0 ↑m 𝐽) ∩ 𝑅) = {𝑓 ∈ (ℕ0
↑m 𝐽)
∣ 𝑓 finSupp
0} |
83 | | elmapfun 8654 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m 𝐽) → Fun 𝑟) |
84 | | vex 3436 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑟 ∈ V |
85 | | 0ex 5231 |
. . . . . . . . . . . . . . . . 17
⊢ ∅
∈ V |
86 | | funisfsupp 9133 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
𝑟 ∧ 𝑟 ∈ V ∧ ∅ ∈ V) →
(𝑟 finSupp ∅ ↔
(𝑟 supp ∅) ∈
Fin)) |
87 | 84, 85, 86 | mp3an23 1452 |
. . . . . . . . . . . . . . . 16
⊢ (Fun
𝑟 → (𝑟 finSupp ∅ ↔ (𝑟 supp ∅) ∈
Fin)) |
88 | 87 | bicomd 222 |
. . . . . . . . . . . . . . 15
⊢ (Fun
𝑟 → ((𝑟 supp ∅) ∈ Fin ↔
𝑟 finSupp
∅)) |
89 | 83, 88 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m 𝐽) → ((𝑟 supp ∅) ∈ Fin ↔ 𝑟 finSupp
∅)) |
90 | 89 | rabbiia 3407 |
. . . . . . . . . . . . 13
⊢ {𝑟 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} = {𝑟 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m 𝐽) ∣ 𝑟 finSupp ∅} |
91 | 53, 55, 57, 60, 62, 66, 82, 90 | fcobijfs 31058 |
. . . . . . . . . . . 12
⊢ (⊤
→ (𝑓 ∈
((ℕ0 ↑m 𝐽) ∩ 𝑅) ↦ ((bits ↾
ℕ0) ∘ 𝑓)):((ℕ0 ↑m
𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m 𝐽)
∣ (𝑟 supp ∅)
∈ Fin}) |
92 | | elinel1 4129 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) → 𝑓 ∈ (ℕ0
↑m 𝐽)) |
93 | | frn 6607 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:𝐽⟶ℕ0 → ran 𝑓 ⊆
ℕ0) |
94 | | cores 6153 |
. . . . . . . . . . . . . . . . 17
⊢ (ran
𝑓 ⊆
ℕ0 → ((bits ↾ ℕ0) ∘ 𝑓) = (bits ∘ 𝑓)) |
95 | 67, 93, 94 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ (ℕ0
↑m 𝐽)
→ ((bits ↾ ℕ0) ∘ 𝑓) = (bits ∘ 𝑓)) |
96 | 92, 95 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) → ((bits ↾
ℕ0) ∘ 𝑓) = (bits ∘ 𝑓)) |
97 | 96 | mpteq2ia 5177 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) ↦ ((bits ↾
ℕ0) ∘ 𝑓)) = (𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) ↦ (bits ∘
𝑓)) |
98 | 97 | eqcomi 2747 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) ↦ (bits ∘
𝑓)) = (𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) ↦ ((bits ↾
ℕ0) ∘ 𝑓)) |
99 | | f1oeq1 6704 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) ↦ (bits ∘
𝑓)) = (𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) ↦ ((bits ↾
ℕ0) ∘ 𝑓)) → ((𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) ↦ (bits ∘
𝑓)):((ℕ0
↑m 𝐽) ∩
𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m 𝐽)
∣ (𝑟 supp ∅)
∈ Fin} ↔ (𝑓
∈ ((ℕ0 ↑m 𝐽) ∩ 𝑅) ↦ ((bits ↾
ℕ0) ∘ 𝑓)):((ℕ0 ↑m
𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m 𝐽)
∣ (𝑟 supp ∅)
∈ Fin})) |
100 | 98, 99 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (⊤
→ ((𝑓 ∈
((ℕ0 ↑m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)):((ℕ0 ↑m
𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m 𝐽)
∣ (𝑟 supp ∅)
∈ Fin} ↔ (𝑓
∈ ((ℕ0 ↑m 𝐽) ∩ 𝑅) ↦ ((bits ↾
ℕ0) ∘ 𝑓)):((ℕ0 ↑m
𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m 𝐽)
∣ (𝑟 supp ∅)
∈ Fin})) |
101 | 91, 100 | mpbird 256 |
. . . . . . . . . . 11
⊢ (⊤
→ (𝑓 ∈
((ℕ0 ↑m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)):((ℕ0 ↑m
𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m 𝐽)
∣ (𝑟 supp ∅)
∈ Fin}) |
102 | 101 | mptru 1546 |
. . . . . . . . . 10
⊢ (𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) ↦ (bits ∘
𝑓)):((ℕ0
↑m 𝐽) ∩
𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m 𝐽)
∣ (𝑟 supp ∅)
∈ Fin} |
103 | | ssrab2 4013 |
. . . . . . . . . . . . . . . 16
⊢ {𝑧 ∈ ℕ ∣ ¬ 2
∥ 𝑧} ⊆
ℕ |
104 | 41, 103 | eqsstri 3955 |
. . . . . . . . . . . . . . 15
⊢ 𝐽 ⊆
ℕ |
105 | 1, 56, 104 | 3pm3.2i 1338 |
. . . . . . . . . . . . . 14
⊢ (ℕ
∈ V ∧ ℕ0 ∈ V ∧ 𝐽 ⊆ ℕ) |
106 | | eulerpart.t |
. . . . . . . . . . . . . . . 16
⊢ 𝑇 = {𝑓 ∈ (ℕ0
↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} |
107 | | cnveq 5782 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑜 → ◡𝑓 = ◡𝑜) |
108 | | dfn2 12246 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ℕ =
(ℕ0 ∖ {0}) |
109 | 108 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑜 → ℕ = (ℕ0
∖ {0})) |
110 | 107, 109 | imaeq12d 5970 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑜 → (◡𝑓 “ ℕ) = (◡𝑜 “ (ℕ0 ∖
{0}))) |
111 | 110 | sseq1d 3952 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑜 → ((◡𝑓 “ ℕ) ⊆ 𝐽 ↔ (◡𝑜 “ (ℕ0 ∖ {0}))
⊆ 𝐽)) |
112 | 111 | cbvrabv 3426 |
. . . . . . . . . . . . . . . 16
⊢ {𝑓 ∈ (ℕ0
↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} = {𝑜 ∈ (ℕ0
↑m ℕ) ∣ (◡𝑜 “ (ℕ0 ∖ {0}))
⊆ 𝐽} |
113 | 106, 112 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢ 𝑇 = {𝑜 ∈ (ℕ0
↑m ℕ) ∣ (◡𝑜 “ (ℕ0 ∖ {0}))
⊆ 𝐽} |
114 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) = (𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) |
115 | 113, 114 | resf1o 31065 |
. . . . . . . . . . . . . 14
⊢
(((ℕ ∈ V ∧ ℕ0 ∈ V ∧ 𝐽 ⊆ ℕ) ∧ 0 ∈
ℕ0) → (𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)):𝑇–1-1-onto→(ℕ0 ↑m 𝐽)) |
116 | 105, 61, 115 | mp2an 689 |
. . . . . . . . . . . . 13
⊢ (𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)):𝑇–1-1-onto→(ℕ0 ↑m 𝐽) |
117 | | f1of1 6715 |
. . . . . . . . . . . . 13
⊢ ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)):𝑇–1-1-onto→(ℕ0 ↑m 𝐽) → (𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)):𝑇–1-1→(ℕ0 ↑m 𝐽)) |
118 | 116, 117 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)):𝑇–1-1→(ℕ0 ↑m 𝐽) |
119 | | inss1 4162 |
. . . . . . . . . . . 12
⊢ (𝑇 ∩ 𝑅) ⊆ 𝑇 |
120 | | f1ores 6730 |
. . . . . . . . . . . 12
⊢ (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)):𝑇–1-1→(ℕ0 ↑m 𝐽) ∧ (𝑇 ∩ 𝑅) ⊆ 𝑇) → ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅))) |
121 | 118, 119,
120 | mp2an 689 |
. . . . . . . . . . 11
⊢ ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) |
122 | | vex 3436 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑜 ∈ V |
123 | 122 | resex 5939 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑜 ↾ 𝐽) ∈ V |
124 | 123, 114 | fnmpti 6576 |
. . . . . . . . . . . . . . . 16
⊢ (𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) Fn 𝑇 |
125 | | fvelimab 6841 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) Fn 𝑇 ∧ (𝑇 ∩ 𝑅) ⊆ 𝑇) → (𝑓 ∈ ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) ↔ ∃𝑚 ∈ (𝑇 ∩ 𝑅)((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽))‘𝑚) = 𝑓)) |
126 | 124, 119,
125 | mp2an 689 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) ↔ ∃𝑚 ∈ (𝑇 ∩ 𝑅)((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽))‘𝑚) = 𝑓) |
127 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ (𝑇 ∩ 𝑅) ↦ (𝑚 ↾ 𝐽)) = (𝑚 ∈ (𝑇 ∩ 𝑅) ↦ (𝑚 ↾ 𝐽)) |
128 | | vex 3436 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑚 ∈ V |
129 | 128 | resex 5939 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ↾ 𝐽) ∈ V |
130 | 127, 129 | elrnmpti 5869 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ ran (𝑚 ∈ (𝑇 ∩ 𝑅) ↦ (𝑚 ↾ 𝐽)) ↔ ∃𝑚 ∈ (𝑇 ∩ 𝑅)𝑓 = (𝑚 ↾ 𝐽)) |
131 | 46, 47, 48, 41, 42, 49, 50, 5, 106 | eulerpartlemt 32338 |
. . . . . . . . . . . . . . . . 17
⊢
((ℕ0 ↑m 𝐽) ∩ 𝑅) = ran (𝑚 ∈ (𝑇 ∩ 𝑅) ↦ (𝑚 ↾ 𝐽)) |
132 | 131 | eleq2i 2830 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) ↔ 𝑓 ∈ ran (𝑚 ∈ (𝑇 ∩ 𝑅) ↦ (𝑚 ↾ 𝐽))) |
133 | | elinel1 4129 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ (𝑇 ∩ 𝑅) → 𝑚 ∈ 𝑇) |
134 | 114 | fvtresfn 6877 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ 𝑇 → ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽))‘𝑚) = (𝑚 ↾ 𝐽)) |
135 | 134 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ 𝑇 → (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽))‘𝑚) = 𝑓 ↔ (𝑚 ↾ 𝐽) = 𝑓)) |
136 | 133, 135 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ (𝑇 ∩ 𝑅) → (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽))‘𝑚) = 𝑓 ↔ (𝑚 ↾ 𝐽) = 𝑓)) |
137 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ↾ 𝐽) = 𝑓 ↔ 𝑓 = (𝑚 ↾ 𝐽)) |
138 | 136, 137 | bitrdi 287 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ (𝑇 ∩ 𝑅) → (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽))‘𝑚) = 𝑓 ↔ 𝑓 = (𝑚 ↾ 𝐽))) |
139 | 138 | rexbiia 3180 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑚 ∈
(𝑇 ∩ 𝑅)((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽))‘𝑚) = 𝑓 ↔ ∃𝑚 ∈ (𝑇 ∩ 𝑅)𝑓 = (𝑚 ↾ 𝐽)) |
140 | 130, 132,
139 | 3bitr4ri 304 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑚 ∈
(𝑇 ∩ 𝑅)((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽))‘𝑚) = 𝑓 ↔ 𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅)) |
141 | 126, 140 | bitri 274 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) ↔ 𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅)) |
142 | 141 | eqriv 2735 |
. . . . . . . . . . . . 13
⊢ ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) = ((ℕ0
↑m 𝐽) ∩
𝑅) |
143 | | f1oeq3 6706 |
. . . . . . . . . . . . 13
⊢ (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) = ((ℕ0
↑m 𝐽) ∩
𝑅) → (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) ↔ ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0 ↑m 𝐽) ∩ 𝑅))) |
144 | 142, 143 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) ↔ ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0 ↑m 𝐽) ∩ 𝑅)) |
145 | | resmpt 5945 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∩ 𝑅) ⊆ 𝑇 → ((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽))) |
146 | | f1oeq1 6704 |
. . . . . . . . . . . . 13
⊢ (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)) → (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0 ↑m 𝐽) ∩ 𝑅) ↔ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0 ↑m 𝐽) ∩ 𝑅))) |
147 | 119, 145,
146 | mp2b 10 |
. . . . . . . . . . . 12
⊢ (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0 ↑m 𝐽) ∩ 𝑅) ↔ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0 ↑m 𝐽) ∩ 𝑅)) |
148 | 144, 147 | bitri 274 |
. . . . . . . . . . 11
⊢ (((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) ↾ (𝑇 ∩ 𝑅)):(𝑇 ∩ 𝑅)–1-1-onto→((𝑜 ∈ 𝑇 ↦ (𝑜 ↾ 𝐽)) “ (𝑇 ∩ 𝑅)) ↔ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0 ↑m 𝐽) ∩ 𝑅)) |
149 | 121, 148 | mpbi 229 |
. . . . . . . . . 10
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0 ↑m 𝐽) ∩ 𝑅) |
150 | | f1oco 6739 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) ↦ (bits ∘
𝑓)):((ℕ0
↑m 𝐽) ∩
𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m 𝐽)
∣ (𝑟 supp ∅)
∈ Fin} ∧ (𝑜 ∈
(𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0 ↑m 𝐽) ∩ 𝑅)) → ((𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) ↦ (bits ∘
𝑓)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m 𝐽)
∣ (𝑟 supp ∅)
∈ Fin}) |
151 | 102, 149,
150 | mp2an 689 |
. . . . . . . . 9
⊢ ((𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) ↦ (bits ∘
𝑓)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m 𝐽)
∣ (𝑟 supp ∅)
∈ Fin} |
152 | | f1of 6716 |
. . . . . . . . . . . . . 14
⊢ ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)–1-1-onto→((ℕ0 ↑m 𝐽) ∩ 𝑅) → (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)⟶((ℕ0
↑m 𝐽) ∩
𝑅)) |
153 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)) |
154 | 153 | fmpt 6984 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑜 ∈
(𝑇 ∩ 𝑅)(𝑜 ↾ 𝐽) ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) ↔ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)⟶((ℕ0
↑m 𝐽) ∩
𝑅)) |
155 | 154 | biimpri 227 |
. . . . . . . . . . . . . 14
⊢ ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)):(𝑇 ∩ 𝑅)⟶((ℕ0
↑m 𝐽) ∩
𝑅) → ∀𝑜 ∈ (𝑇 ∩ 𝑅)(𝑜 ↾ 𝐽) ∈ ((ℕ0
↑m 𝐽) ∩
𝑅)) |
156 | 149, 152,
155 | mp2b 10 |
. . . . . . . . . . . . 13
⊢
∀𝑜 ∈
(𝑇 ∩ 𝑅)(𝑜 ↾ 𝐽) ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) |
157 | 156 | a1i 11 |
. . . . . . . . . . . 12
⊢ (⊤
→ ∀𝑜 ∈
(𝑇 ∩ 𝑅)(𝑜 ↾ 𝐽) ∈ ((ℕ0
↑m 𝐽) ∩
𝑅)) |
158 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽))) |
159 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (⊤
→ (𝑓 ∈
((ℕ0 ↑m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) = (𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) ↦ (bits ∘
𝑓))) |
160 | | coeq2 5767 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑜 ↾ 𝐽) → (bits ∘ 𝑓) = (bits ∘ (𝑜 ↾ 𝐽))) |
161 | 157, 158,
159, 160 | fmptcof 7002 |
. . . . . . . . . . 11
⊢ (⊤
→ ((𝑓 ∈
((ℕ0 ↑m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))) |
162 | 161 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))) = ((𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) ↦ (bits ∘
𝑓)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽)))) |
163 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (⊤
→ (𝑇 ∩ 𝑅) = (𝑇 ∩ 𝑅)) |
164 | 49 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ 𝐻 = {𝑟 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}) |
165 | 162, 163,
164 | f1oeq123d 6710 |
. . . . . . . . 9
⊢ (⊤
→ ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)–1-1-onto→𝐻 ↔ ((𝑓 ∈ ((ℕ0
↑m 𝐽) ∩
𝑅) ↦ (bits ∘
𝑓)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m 𝐽)
∣ (𝑟 supp ∅)
∈ Fin})) |
166 | 151, 165 | mpbiri 257 |
. . . . . . . 8
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)–1-1-onto→𝐻) |
167 | 166 | mptru 1546 |
. . . . . . 7
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)–1-1-onto→𝐻 |
168 | | f1oco 6739 |
. . . . . . 7
⊢ ((𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
∧ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)–1-1-onto→𝐻) → (𝑀 ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩
Fin)) |
169 | 51, 167, 168 | mp2an 689 |
. . . . . 6
⊢ (𝑀 ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩
Fin) |
170 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))) |
171 | | bitsf 16134 |
. . . . . . . . . . . . . 14
⊢
bits:ℤ⟶𝒫 ℕ0 |
172 | | zex 12328 |
. . . . . . . . . . . . . 14
⊢ ℤ
∈ V |
173 | | fex 7102 |
. . . . . . . . . . . . . 14
⊢
((bits:ℤ⟶𝒫 ℕ0 ∧ ℤ ∈
V) → bits ∈ V) |
174 | 171, 172,
173 | mp2an 689 |
. . . . . . . . . . . . 13
⊢ bits
∈ V |
175 | 174, 123 | coex 7777 |
. . . . . . . . . . . 12
⊢ (bits
∘ (𝑜 ↾ 𝐽)) ∈ V |
176 | 175 | a1i 11 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → (bits ∘ (𝑜 ↾ 𝐽)) ∈ V) |
177 | 170, 176 | fvmpt2d 6888 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))‘𝑜) = (bits ∘ (𝑜 ↾ 𝐽))) |
178 | | f1of 6716 |
. . . . . . . . . . . 12
⊢ ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)–1-1-onto→𝐻 → (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)⟶𝐻) |
179 | 166, 178 | syl 17 |
. . . . . . . . . . 11
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽))):(𝑇 ∩ 𝑅)⟶𝐻) |
180 | 179 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))‘𝑜) ∈ 𝐻) |
181 | 177, 180 | eqeltrrd 2840 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → (bits ∘ (𝑜 ↾ 𝐽)) ∈ 𝐻) |
182 | | f1ofn 6717 |
. . . . . . . . . . . 12
⊢ (𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
→ 𝑀 Fn 𝐻) |
183 | 51, 182 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 𝑀 Fn 𝐻 |
184 | | dffn5 6828 |
. . . . . . . . . . 11
⊢ (𝑀 Fn 𝐻 ↔ 𝑀 = (𝑟 ∈ 𝐻 ↦ (𝑀‘𝑟))) |
185 | 183, 184 | mpbi 229 |
. . . . . . . . . 10
⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ (𝑀‘𝑟)) |
186 | 185 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ 𝑀 = (𝑟 ∈ 𝐻 ↦ (𝑀‘𝑟))) |
187 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑟 = (bits ∘ (𝑜 ↾ 𝐽)) → (𝑀‘𝑟) = (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) |
188 | 181, 170,
186, 187 | fmptco 7001 |
. . . . . . . 8
⊢ (⊤
→ (𝑀 ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) |
189 | 188 | mptru 1546 |
. . . . . . 7
⊢ (𝑀 ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) |
190 | | f1oeq1 6704 |
. . . . . . 7
⊢ ((𝑀 ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) → ((𝑀 ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
↔ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩
Fin))) |
191 | 189, 190 | ax-mp 5 |
. . . . . 6
⊢ ((𝑀 ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
↔ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩
Fin)) |
192 | 169, 191 | mpbi 229 |
. . . . 5
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩
Fin) |
193 | | f1oco 6739 |
. . . . 5
⊢ (((𝑎 ∈ (𝒫 (𝐽 × ℕ0)
∩ Fin) ↦ (𝐹
“ 𝑎)):(𝒫
(𝐽 ×
ℕ0) ∩ Fin)–1-1-onto→(𝒫 ℕ ∩ Fin) ∧ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin))
→ ((𝑎 ∈
(𝒫 (𝐽 ×
ℕ0) ∩ Fin) ↦ (𝐹 “ 𝑎)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩
Fin)) |
194 | 45, 192, 193 | mp2an 689 |
. . . 4
⊢ ((𝑎 ∈ (𝒫 (𝐽 × ℕ0)
∩ Fin) ↦ (𝐹
“ 𝑎)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin) |
195 | | simpr 485 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → 𝑜 ∈ (𝑇 ∩ 𝑅)) |
196 | | fvex 6787 |
. . . . . . . . 9
⊢ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))) ∈ V |
197 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) |
198 | 197 | fvmpt2 6886 |
. . . . . . . . 9
⊢ ((𝑜 ∈ (𝑇 ∩ 𝑅) ∧ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))) ∈ V) → ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))‘𝑜) = (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) |
199 | 195, 196,
198 | sylancl 586 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))‘𝑜) = (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) |
200 | | f1of 6716 |
. . . . . . . . . 10
⊢ ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)⟶(𝒫 (𝐽 × ℕ0) ∩
Fin)) |
201 | 192, 200 | mp1i 13 |
. . . . . . . . 9
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))):(𝑇 ∩ 𝑅)⟶(𝒫 (𝐽 × ℕ0) ∩
Fin)) |
202 | 201 | ffvelrnda 6961 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))‘𝑜) ∈ (𝒫 (𝐽 × ℕ0) ∩
Fin)) |
203 | 199, 202 | eqeltrrd 2840 |
. . . . . . 7
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩
Fin)) |
204 | | eqidd 2739 |
. . . . . . 7
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) |
205 | | eqidd 2739 |
. . . . . . 7
⊢ (⊤
→ (𝑎 ∈ (𝒫
(𝐽 ×
ℕ0) ∩ Fin) ↦ (𝐹 “ 𝑎)) = (𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin)
↦ (𝐹 “ 𝑎))) |
206 | | imaeq2 5965 |
. . . . . . 7
⊢ (𝑎 = (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))) → (𝐹 “ 𝑎) = (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) |
207 | 203, 204,
205, 206 | fmptco 7001 |
. . . . . 6
⊢ (⊤
→ ((𝑎 ∈
(𝒫 (𝐽 ×
ℕ0) ∩ Fin) ↦ (𝐹 “ 𝑎)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
208 | 207 | mptru 1546 |
. . . . 5
⊢ ((𝑎 ∈ (𝒫 (𝐽 × ℕ0)
∩ Fin) ↦ (𝐹
“ 𝑎)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) |
209 | | f1oeq1 6704 |
. . . . 5
⊢ (((𝑎 ∈ (𝒫 (𝐽 × ℕ0)
∩ Fin) ↦ (𝐹
“ 𝑎)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) → (((𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin)
↦ (𝐹 “ 𝑎)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin) ↔ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩
Fin))) |
210 | 208, 209 | ax-mp 5 |
. . . 4
⊢ (((𝑎 ∈ (𝒫 (𝐽 × ℕ0)
∩ Fin) ↦ (𝐹
“ 𝑎)) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin) ↔ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩
Fin)) |
211 | 194, 210 | mpbi 229 |
. . 3
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin) |
212 | | f1oco 6739 |
. . 3
⊢
((((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩
Fin)–1-1-onto→(({0, 1} ↑m ℕ) ∩
𝑅) ∧ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin)) →
(((𝟭‘ℕ) ↾ Fin) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))):(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑m ℕ) ∩ 𝑅)) |
213 | 40, 211, 212 | mp2an 689 |
. 2
⊢
(((𝟭‘ℕ) ↾ Fin) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))):(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑m ℕ) ∩ 𝑅) |
214 | | eulerpart.g |
. . . 4
⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦
((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
215 | 42 | mpoexg 7917 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ V ∧
ℕ0 ∈ V) → 𝐹 ∈ V) |
216 | 54, 56, 215 | mp2an 689 |
. . . . . . . . 9
⊢ 𝐹 ∈ V |
217 | | imaexg 7762 |
. . . . . . . . 9
⊢ (𝐹 ∈ V → (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) ∈ V) |
218 | 216, 217 | ax-mp 5 |
. . . . . . . 8
⊢ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) ∈ V |
219 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) |
220 | 219 | fvmpt2 6886 |
. . . . . . . 8
⊢ ((𝑜 ∈ (𝑇 ∩ 𝑅) ∧ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) ∈ V) → ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))‘𝑜) = (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) |
221 | 195, 218,
220 | sylancl 586 |
. . . . . . 7
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))‘𝑜) = (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) |
222 | | f1of 6716 |
. . . . . . . . 9
⊢ ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin) → (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)⟶(𝒫 ℕ ∩
Fin)) |
223 | 211, 222 | mp1i 13 |
. . . . . . . 8
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))):(𝑇 ∩ 𝑅)⟶(𝒫 ℕ ∩
Fin)) |
224 | 223 | ffvelrnda 6961 |
. . . . . . 7
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → ((𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))‘𝑜) ∈ (𝒫 ℕ ∩
Fin)) |
225 | 221, 224 | eqeltrrd 2840 |
. . . . . 6
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅)) → (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) ∈ (𝒫 ℕ ∩
Fin)) |
226 | | eqidd 2739 |
. . . . . 6
⊢ (⊤
→ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
227 | | indf1o 31992 |
. . . . . . . . . . 11
⊢ (ℕ
∈ V → (𝟭‘ℕ):𝒫 ℕ–1-1-onto→({0,
1} ↑m ℕ)) |
228 | | f1ofn 6717 |
. . . . . . . . . . 11
⊢
((𝟭‘ℕ):𝒫 ℕ–1-1-onto→({0,
1} ↑m ℕ) → (𝟭‘ℕ) Fn 𝒫
ℕ) |
229 | 1, 227, 228 | mp2b 10 |
. . . . . . . . . 10
⊢
(𝟭‘ℕ) Fn 𝒫 ℕ |
230 | | dffn5 6828 |
. . . . . . . . . 10
⊢
((𝟭‘ℕ) Fn 𝒫 ℕ ↔
(𝟭‘ℕ) = (𝑏 ∈ 𝒫 ℕ ↦
((𝟭‘ℕ)‘𝑏))) |
231 | 229, 230 | mpbi 229 |
. . . . . . . . 9
⊢
(𝟭‘ℕ) = (𝑏 ∈ 𝒫 ℕ ↦
((𝟭‘ℕ)‘𝑏)) |
232 | 231 | reseq1i 5887 |
. . . . . . . 8
⊢
((𝟭‘ℕ) ↾ Fin) = ((𝑏 ∈ 𝒫 ℕ ↦
((𝟭‘ℕ)‘𝑏)) ↾ Fin) |
233 | | resmpt3 5946 |
. . . . . . . 8
⊢ ((𝑏 ∈ 𝒫 ℕ
↦ ((𝟭‘ℕ)‘𝑏)) ↾ Fin) = (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦
((𝟭‘ℕ)‘𝑏)) |
234 | 232, 233 | eqtri 2766 |
. . . . . . 7
⊢
((𝟭‘ℕ) ↾ Fin) = (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦
((𝟭‘ℕ)‘𝑏)) |
235 | 234 | a1i 11 |
. . . . . 6
⊢ (⊤
→ ((𝟭‘ℕ) ↾ Fin) = (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦
((𝟭‘ℕ)‘𝑏))) |
236 | | fveq2 6774 |
. . . . . 6
⊢ (𝑏 = (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) →
((𝟭‘ℕ)‘𝑏) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
237 | 225, 226,
235, 236 | fmptco 7001 |
. . . . 5
⊢ (⊤
→ (((𝟭‘ℕ) ↾ Fin) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦
((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))))) |
238 | 237 | mptru 1546 |
. . . 4
⊢
(((𝟭‘ℕ) ↾ Fin) ∘ (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦
((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
239 | 214, 238 | eqtr4i 2769 |
. . 3
⊢ 𝐺 = (((𝟭‘ℕ)
↾ Fin) ∘ (𝑜
∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
240 | | f1oeq1 6704 |
. . 3
⊢ (𝐺 = (((𝟭‘ℕ)
↾ Fin) ∘ (𝑜
∈ (𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) → (𝐺:(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑m ℕ) ∩ 𝑅) ↔ (((𝟭‘ℕ) ↾
Fin) ∘ (𝑜 ∈
(𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))):(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑m ℕ) ∩ 𝑅))) |
241 | 239, 240 | ax-mp 5 |
. 2
⊢ (𝐺:(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑m ℕ) ∩ 𝑅) ↔ (((𝟭‘ℕ) ↾
Fin) ∘ (𝑜 ∈
(𝑇 ∩ 𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))):(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑m ℕ) ∩ 𝑅)) |
242 | 213, 241 | mpbir 230 |
1
⊢ 𝐺:(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑m ℕ) ∩ 𝑅) |