Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartgbij Structured version   Visualization version   GIF version

Theorem eulerpartgbij 31630
Description: Lemma for eulerpart 31640: The 𝐺 function is a bijection. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
Assertion
Ref Expression
eulerpartgbij 𝐺:(𝑇𝑅)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅)
Distinct variable groups:   𝑓,𝑔,𝑘,𝑛,𝑜,𝑥,𝑦,𝑧   𝑜,𝐹   𝑓,𝑟,𝐽,𝑜,𝑥,𝑦   𝑜,𝑀,𝑟   𝑓,𝑁,𝑔,𝑥   𝑃,𝑔   𝑅,𝑓,𝑜   𝑜,𝐻,𝑟   𝑇,𝑓,𝑜
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑘,𝑛,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛)   𝐽(𝑧,𝑔,𝑘,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛)   𝑁(𝑦,𝑧,𝑘,𝑛,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)

Proof of Theorem eulerpartgbij
Dummy variables 𝑎 𝑚 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 11644 . . . . 5 ℕ ∈ V
2 indf1ofs 31285 . . . . 5 (ℕ ∈ V → ((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑m ℕ) ∣ (𝑓 “ {1}) ∈ Fin})
31, 2ax-mp 5 . . . 4 ((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑m ℕ) ∣ (𝑓 “ {1}) ∈ Fin}
4 incom 4178 . . . . . . 7 (({0, 1} ↑m ℕ) ∩ {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}) = ({𝑓 ∣ (𝑓 “ ℕ) ∈ Fin} ∩ ({0, 1} ↑m ℕ))
5 eulerpart.r . . . . . . . 8 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
65ineq2i 4186 . . . . . . 7 (({0, 1} ↑m ℕ) ∩ 𝑅) = (({0, 1} ↑m ℕ) ∩ {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin})
7 dfrab2 4279 . . . . . . 7 {𝑓 ∈ ({0, 1} ↑m ℕ) ∣ (𝑓 “ ℕ) ∈ Fin} = ({𝑓 ∣ (𝑓 “ ℕ) ∈ Fin} ∩ ({0, 1} ↑m ℕ))
84, 6, 73eqtr4i 2854 . . . . . 6 (({0, 1} ↑m ℕ) ∩ 𝑅) = {𝑓 ∈ ({0, 1} ↑m ℕ) ∣ (𝑓 “ ℕ) ∈ Fin}
9 elmapfun 8430 . . . . . . . . 9 (𝑓 ∈ ({0, 1} ↑m ℕ) → Fun 𝑓)
10 elmapi 8428 . . . . . . . . . 10 (𝑓 ∈ ({0, 1} ↑m ℕ) → 𝑓:ℕ⟶{0, 1})
1110frnd 6521 . . . . . . . . 9 (𝑓 ∈ ({0, 1} ↑m ℕ) → ran 𝑓 ⊆ {0, 1})
12 fimacnvinrn2 6841 . . . . . . . . . 10 ((Fun 𝑓 ∧ ran 𝑓 ⊆ {0, 1}) → (𝑓 “ ℕ) = (𝑓 “ (ℕ ∩ {0, 1})))
13 df-pr 4570 . . . . . . . . . . . . . 14 {0, 1} = ({0} ∪ {1})
1413ineq2i 4186 . . . . . . . . . . . . 13 (ℕ ∩ {0, 1}) = (ℕ ∩ ({0} ∪ {1}))
15 indi 4250 . . . . . . . . . . . . 13 (ℕ ∩ ({0} ∪ {1})) = ((ℕ ∩ {0}) ∪ (ℕ ∩ {1}))
16 0nnn 11674 . . . . . . . . . . . . . . 15 ¬ 0 ∈ ℕ
17 disjsn 4647 . . . . . . . . . . . . . . 15 ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ)
1816, 17mpbir 233 . . . . . . . . . . . . . 14 (ℕ ∩ {0}) = ∅
19 1nn 11649 . . . . . . . . . . . . . . . . 17 1 ∈ ℕ
20 1ex 10637 . . . . . . . . . . . . . . . . . 18 1 ∈ V
2120snss 4718 . . . . . . . . . . . . . . . . 17 (1 ∈ ℕ ↔ {1} ⊆ ℕ)
2219, 21mpbi 232 . . . . . . . . . . . . . . . 16 {1} ⊆ ℕ
23 dfss 3953 . . . . . . . . . . . . . . . 16 ({1} ⊆ ℕ ↔ {1} = ({1} ∩ ℕ))
2422, 23mpbi 232 . . . . . . . . . . . . . . 15 {1} = ({1} ∩ ℕ)
25 incom 4178 . . . . . . . . . . . . . . 15 ({1} ∩ ℕ) = (ℕ ∩ {1})
2624, 25eqtr2i 2845 . . . . . . . . . . . . . 14 (ℕ ∩ {1}) = {1}
2718, 26uneq12i 4137 . . . . . . . . . . . . 13 ((ℕ ∩ {0}) ∪ (ℕ ∩ {1})) = (∅ ∪ {1})
2814, 15, 273eqtri 2848 . . . . . . . . . . . 12 (ℕ ∩ {0, 1}) = (∅ ∪ {1})
29 uncom 4129 . . . . . . . . . . . 12 (∅ ∪ {1}) = ({1} ∪ ∅)
30 un0 4344 . . . . . . . . . . . 12 ({1} ∪ ∅) = {1}
3128, 29, 303eqtri 2848 . . . . . . . . . . 11 (ℕ ∩ {0, 1}) = {1}
3231imaeq2i 5927 . . . . . . . . . 10 (𝑓 “ (ℕ ∩ {0, 1})) = (𝑓 “ {1})
3312, 32syl6eq 2872 . . . . . . . . 9 ((Fun 𝑓 ∧ ran 𝑓 ⊆ {0, 1}) → (𝑓 “ ℕ) = (𝑓 “ {1}))
349, 11, 33syl2anc 586 . . . . . . . 8 (𝑓 ∈ ({0, 1} ↑m ℕ) → (𝑓 “ ℕ) = (𝑓 “ {1}))
3534eleq1d 2897 . . . . . . 7 (𝑓 ∈ ({0, 1} ↑m ℕ) → ((𝑓 “ ℕ) ∈ Fin ↔ (𝑓 “ {1}) ∈ Fin))
3635rabbiia 3472 . . . . . 6 {𝑓 ∈ ({0, 1} ↑m ℕ) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ ({0, 1} ↑m ℕ) ∣ (𝑓 “ {1}) ∈ Fin}
378, 36eqtr2i 2845 . . . . 5 {𝑓 ∈ ({0, 1} ↑m ℕ) ∣ (𝑓 “ {1}) ∈ Fin} = (({0, 1} ↑m ℕ) ∩ 𝑅)
38 f1oeq3 6606 . . . . 5 ({𝑓 ∈ ({0, 1} ↑m ℕ) ∣ (𝑓 “ {1}) ∈ Fin} = (({0, 1} ↑m ℕ) ∩ 𝑅) → (((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑m ℕ) ∣ (𝑓 “ {1}) ∈ Fin} ↔ ((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩ Fin)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅)))
3937, 38ax-mp 5 . . . 4 (((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑m ℕ) ∣ (𝑓 “ {1}) ∈ Fin} ↔ ((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩ Fin)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅))
403, 39mpbi 232 . . 3 ((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩ Fin)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅)
41 eulerpart.j . . . . . . 7 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
42 eulerpart.f . . . . . . 7 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
4341, 42oddpwdc 31612 . . . . . 6 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
44 f1opwfi 8828 . . . . . 6 (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → (𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin) ↦ (𝐹𝑎)):(𝒫 (𝐽 × ℕ0) ∩ Fin)–1-1-onto→(𝒫 ℕ ∩ Fin))
4543, 44ax-mp 5 . . . . 5 (𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin) ↦ (𝐹𝑎)):(𝒫 (𝐽 × ℕ0) ∩ Fin)–1-1-onto→(𝒫 ℕ ∩ Fin)
46 eulerpart.p . . . . . . . 8 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
47 eulerpart.o . . . . . . . 8 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
48 eulerpart.d . . . . . . . 8 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
49 eulerpart.h . . . . . . . 8 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
50 eulerpart.m . . . . . . . 8 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
5146, 47, 48, 41, 42, 49, 50eulerpartlem1 31625 . . . . . . 7 𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
52 bitsf1o 15794 . . . . . . . . . . . . . 14 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
5352a1i 11 . . . . . . . . . . . . 13 (⊤ → (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin))
5441, 1rabex2 5237 . . . . . . . . . . . . . 14 𝐽 ∈ V
5554a1i 11 . . . . . . . . . . . . 13 (⊤ → 𝐽 ∈ V)
56 nn0ex 11904 . . . . . . . . . . . . . 14 0 ∈ V
5756a1i 11 . . . . . . . . . . . . 13 (⊤ → ℕ0 ∈ V)
5856pwex 5281 . . . . . . . . . . . . . . 15 𝒫 ℕ0 ∈ V
5958inex1 5221 . . . . . . . . . . . . . 14 (𝒫 ℕ0 ∩ Fin) ∈ V
6059a1i 11 . . . . . . . . . . . . 13 (⊤ → (𝒫 ℕ0 ∩ Fin) ∈ V)
61 0nn0 11913 . . . . . . . . . . . . . 14 0 ∈ ℕ0
6261a1i 11 . . . . . . . . . . . . 13 (⊤ → 0 ∈ ℕ0)
63 fvres 6689 . . . . . . . . . . . . . . 15 (0 ∈ ℕ0 → ((bits ↾ ℕ0)‘0) = (bits‘0))
6461, 63ax-mp 5 . . . . . . . . . . . . . 14 ((bits ↾ ℕ0)‘0) = (bits‘0)
65 0bits 15788 . . . . . . . . . . . . . 14 (bits‘0) = ∅
6664, 65eqtr2i 2845 . . . . . . . . . . . . 13 ∅ = ((bits ↾ ℕ0)‘0)
67 elmapi 8428 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (ℕ0m 𝐽) → 𝑓:𝐽⟶ℕ0)
68 frnnn0supp 11954 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ V ∧ 𝑓:𝐽⟶ℕ0) → (𝑓 supp 0) = (𝑓 “ ℕ))
6954, 67, 68sylancr 589 . . . . . . . . . . . . . . . 16 (𝑓 ∈ (ℕ0m 𝐽) → (𝑓 supp 0) = (𝑓 “ ℕ))
7069eleq1d 2897 . . . . . . . . . . . . . . 15 (𝑓 ∈ (ℕ0m 𝐽) → ((𝑓 supp 0) ∈ Fin ↔ (𝑓 “ ℕ) ∈ Fin))
7170rabbiia 3472 . . . . . . . . . . . . . 14 {𝑓 ∈ (ℕ0m 𝐽) ∣ (𝑓 supp 0) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐽) ∣ (𝑓 “ ℕ) ∈ Fin}
72 elmapfun 8430 . . . . . . . . . . . . . . . 16 (𝑓 ∈ (ℕ0m 𝐽) → Fun 𝑓)
73 vex 3497 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
74 funisfsupp 8838 . . . . . . . . . . . . . . . . 17 ((Fun 𝑓𝑓 ∈ V ∧ 0 ∈ ℕ0) → (𝑓 finSupp 0 ↔ (𝑓 supp 0) ∈ Fin))
7573, 61, 74mp3an23 1449 . . . . . . . . . . . . . . . 16 (Fun 𝑓 → (𝑓 finSupp 0 ↔ (𝑓 supp 0) ∈ Fin))
7672, 75syl 17 . . . . . . . . . . . . . . 15 (𝑓 ∈ (ℕ0m 𝐽) → (𝑓 finSupp 0 ↔ (𝑓 supp 0) ∈ Fin))
7776rabbiia 3472 . . . . . . . . . . . . . 14 {𝑓 ∈ (ℕ0m 𝐽) ∣ 𝑓 finSupp 0} = {𝑓 ∈ (ℕ0m 𝐽) ∣ (𝑓 supp 0) ∈ Fin}
78 incom 4178 . . . . . . . . . . . . . . 15 ({𝑓 ∣ (𝑓 “ ℕ) ∈ Fin} ∩ (ℕ0m 𝐽)) = ((ℕ0m 𝐽) ∩ {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin})
79 dfrab2 4279 . . . . . . . . . . . . . . 15 {𝑓 ∈ (ℕ0m 𝐽) ∣ (𝑓 “ ℕ) ∈ Fin} = ({𝑓 ∣ (𝑓 “ ℕ) ∈ Fin} ∩ (ℕ0m 𝐽))
805ineq2i 4186 . . . . . . . . . . . . . . 15 ((ℕ0m 𝐽) ∩ 𝑅) = ((ℕ0m 𝐽) ∩ {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin})
8178, 79, 803eqtr4ri 2855 . . . . . . . . . . . . . 14 ((ℕ0m 𝐽) ∩ 𝑅) = {𝑓 ∈ (ℕ0m 𝐽) ∣ (𝑓 “ ℕ) ∈ Fin}
8271, 77, 813eqtr4ri 2855 . . . . . . . . . . . . 13 ((ℕ0m 𝐽) ∩ 𝑅) = {𝑓 ∈ (ℕ0m 𝐽) ∣ 𝑓 finSupp 0}
83 elmapfun 8430 . . . . . . . . . . . . . . 15 (𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) → Fun 𝑟)
84 vex 3497 . . . . . . . . . . . . . . . . 17 𝑟 ∈ V
85 0ex 5211 . . . . . . . . . . . . . . . . 17 ∅ ∈ V
86 funisfsupp 8838 . . . . . . . . . . . . . . . . 17 ((Fun 𝑟𝑟 ∈ V ∧ ∅ ∈ V) → (𝑟 finSupp ∅ ↔ (𝑟 supp ∅) ∈ Fin))
8784, 85, 86mp3an23 1449 . . . . . . . . . . . . . . . 16 (Fun 𝑟 → (𝑟 finSupp ∅ ↔ (𝑟 supp ∅) ∈ Fin))
8887bicomd 225 . . . . . . . . . . . . . . 15 (Fun 𝑟 → ((𝑟 supp ∅) ∈ Fin ↔ 𝑟 finSupp ∅))
8983, 88syl 17 . . . . . . . . . . . . . 14 (𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) → ((𝑟 supp ∅) ∈ Fin ↔ 𝑟 finSupp ∅))
9089rabbiia 3472 . . . . . . . . . . . . 13 {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ 𝑟 finSupp ∅}
9153, 55, 57, 60, 62, 66, 82, 90fcobijfs 30459 . . . . . . . . . . . 12 (⊤ → (𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ ((bits ↾ ℕ0) ∘ 𝑓)):((ℕ0m 𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin})
92 elinel1 4172 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) → 𝑓 ∈ (ℕ0m 𝐽))
93 frn 6520 . . . . . . . . . . . . . . . . 17 (𝑓:𝐽⟶ℕ0 → ran 𝑓 ⊆ ℕ0)
94 cores 6102 . . . . . . . . . . . . . . . . 17 (ran 𝑓 ⊆ ℕ0 → ((bits ↾ ℕ0) ∘ 𝑓) = (bits ∘ 𝑓))
9567, 93, 943syl 18 . . . . . . . . . . . . . . . 16 (𝑓 ∈ (ℕ0m 𝐽) → ((bits ↾ ℕ0) ∘ 𝑓) = (bits ∘ 𝑓))
9692, 95syl 17 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) → ((bits ↾ ℕ0) ∘ 𝑓) = (bits ∘ 𝑓))
9796mpteq2ia 5157 . . . . . . . . . . . . . 14 (𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ ((bits ↾ ℕ0) ∘ 𝑓)) = (𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓))
9897eqcomi 2830 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) = (𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ ((bits ↾ ℕ0) ∘ 𝑓))
99 f1oeq1 6604 . . . . . . . . . . . . 13 ((𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) = (𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ ((bits ↾ ℕ0) ∘ 𝑓)) → ((𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)):((ℕ0m 𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ↔ (𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ ((bits ↾ ℕ0) ∘ 𝑓)):((ℕ0m 𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}))
10098, 99mp1i 13 . . . . . . . . . . . 12 (⊤ → ((𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)):((ℕ0m 𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ↔ (𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ ((bits ↾ ℕ0) ∘ 𝑓)):((ℕ0m 𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}))
10191, 100mpbird 259 . . . . . . . . . . 11 (⊤ → (𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)):((ℕ0m 𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin})
102101mptru 1544 . . . . . . . . . 10 (𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)):((ℕ0m 𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
103 ssrab2 4056 . . . . . . . . . . . . . . . 16 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ⊆ ℕ
10441, 103eqsstri 4001 . . . . . . . . . . . . . . 15 𝐽 ⊆ ℕ
1051, 56, 1043pm3.2i 1335 . . . . . . . . . . . . . 14 (ℕ ∈ V ∧ ℕ0 ∈ V ∧ 𝐽 ⊆ ℕ)
106 eulerpart.t . . . . . . . . . . . . . . . 16 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
107 cnveq 5744 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑜𝑓 = 𝑜)
108 dfn2 11911 . . . . . . . . . . . . . . . . . . . 20 ℕ = (ℕ0 ∖ {0})
109108a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑜 → ℕ = (ℕ0 ∖ {0}))
110107, 109imaeq12d 5930 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑜 → (𝑓 “ ℕ) = (𝑜 “ (ℕ0 ∖ {0})))
111110sseq1d 3998 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑜 → ((𝑓 “ ℕ) ⊆ 𝐽 ↔ (𝑜 “ (ℕ0 ∖ {0})) ⊆ 𝐽))
112111cbvrabv 3491 . . . . . . . . . . . . . . . 16 {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽} = {𝑜 ∈ (ℕ0m ℕ) ∣ (𝑜 “ (ℕ0 ∖ {0})) ⊆ 𝐽}
113106, 112eqtri 2844 . . . . . . . . . . . . . . 15 𝑇 = {𝑜 ∈ (ℕ0m ℕ) ∣ (𝑜 “ (ℕ0 ∖ {0})) ⊆ 𝐽}
114 eqid 2821 . . . . . . . . . . . . . . 15 (𝑜𝑇 ↦ (𝑜𝐽)) = (𝑜𝑇 ↦ (𝑜𝐽))
115113, 114resf1o 30466 . . . . . . . . . . . . . 14 (((ℕ ∈ V ∧ ℕ0 ∈ V ∧ 𝐽 ⊆ ℕ) ∧ 0 ∈ ℕ0) → (𝑜𝑇 ↦ (𝑜𝐽)):𝑇1-1-onto→(ℕ0m 𝐽))
116105, 61, 115mp2an 690 . . . . . . . . . . . . 13 (𝑜𝑇 ↦ (𝑜𝐽)):𝑇1-1-onto→(ℕ0m 𝐽)
117 f1of1 6614 . . . . . . . . . . . . 13 ((𝑜𝑇 ↦ (𝑜𝐽)):𝑇1-1-onto→(ℕ0m 𝐽) → (𝑜𝑇 ↦ (𝑜𝐽)):𝑇1-1→(ℕ0m 𝐽))
118116, 117ax-mp 5 . . . . . . . . . . . 12 (𝑜𝑇 ↦ (𝑜𝐽)):𝑇1-1→(ℕ0m 𝐽)
119 inss1 4205 . . . . . . . . . . . 12 (𝑇𝑅) ⊆ 𝑇
120 f1ores 6629 . . . . . . . . . . . 12 (((𝑜𝑇 ↦ (𝑜𝐽)):𝑇1-1→(ℕ0m 𝐽) ∧ (𝑇𝑅) ⊆ 𝑇) → ((𝑜𝑇 ↦ (𝑜𝐽)) ↾ (𝑇𝑅)):(𝑇𝑅)–1-1-onto→((𝑜𝑇 ↦ (𝑜𝐽)) “ (𝑇𝑅)))
121118, 119, 120mp2an 690 . . . . . . . . . . 11 ((𝑜𝑇 ↦ (𝑜𝐽)) ↾ (𝑇𝑅)):(𝑇𝑅)–1-1-onto→((𝑜𝑇 ↦ (𝑜𝐽)) “ (𝑇𝑅))
122 vex 3497 . . . . . . . . . . . . . . . . . 18 𝑜 ∈ V
123122resex 5899 . . . . . . . . . . . . . . . . 17 (𝑜𝐽) ∈ V
124123, 114fnmpti 6491 . . . . . . . . . . . . . . . 16 (𝑜𝑇 ↦ (𝑜𝐽)) Fn 𝑇
125 fvelimab 6737 . . . . . . . . . . . . . . . 16 (((𝑜𝑇 ↦ (𝑜𝐽)) Fn 𝑇 ∧ (𝑇𝑅) ⊆ 𝑇) → (𝑓 ∈ ((𝑜𝑇 ↦ (𝑜𝐽)) “ (𝑇𝑅)) ↔ ∃𝑚 ∈ (𝑇𝑅)((𝑜𝑇 ↦ (𝑜𝐽))‘𝑚) = 𝑓))
126124, 119, 125mp2an 690 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((𝑜𝑇 ↦ (𝑜𝐽)) “ (𝑇𝑅)) ↔ ∃𝑚 ∈ (𝑇𝑅)((𝑜𝑇 ↦ (𝑜𝐽))‘𝑚) = 𝑓)
127 eqid 2821 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽)) = (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))
128 vex 3497 . . . . . . . . . . . . . . . . . 18 𝑚 ∈ V
129128resex 5899 . . . . . . . . . . . . . . . . 17 (𝑚𝐽) ∈ V
130127, 129elrnmpti 5832 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽)) ↔ ∃𝑚 ∈ (𝑇𝑅)𝑓 = (𝑚𝐽))
13146, 47, 48, 41, 42, 49, 50, 5, 106eulerpartlemt 31629 . . . . . . . . . . . . . . . . 17 ((ℕ0m 𝐽) ∩ 𝑅) = ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))
132131eleq2i 2904 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↔ 𝑓 ∈ ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽)))
133 elinel1 4172 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (𝑇𝑅) → 𝑚𝑇)
134114fvtresfn 6770 . . . . . . . . . . . . . . . . . . . 20 (𝑚𝑇 → ((𝑜𝑇 ↦ (𝑜𝐽))‘𝑚) = (𝑚𝐽))
135134eqeq1d 2823 . . . . . . . . . . . . . . . . . . 19 (𝑚𝑇 → (((𝑜𝑇 ↦ (𝑜𝐽))‘𝑚) = 𝑓 ↔ (𝑚𝐽) = 𝑓))
136133, 135syl 17 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (𝑇𝑅) → (((𝑜𝑇 ↦ (𝑜𝐽))‘𝑚) = 𝑓 ↔ (𝑚𝐽) = 𝑓))
137 eqcom 2828 . . . . . . . . . . . . . . . . . 18 ((𝑚𝐽) = 𝑓𝑓 = (𝑚𝐽))
138136, 137syl6bb 289 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (𝑇𝑅) → (((𝑜𝑇 ↦ (𝑜𝐽))‘𝑚) = 𝑓𝑓 = (𝑚𝐽)))
139138rexbiia 3246 . . . . . . . . . . . . . . . 16 (∃𝑚 ∈ (𝑇𝑅)((𝑜𝑇 ↦ (𝑜𝐽))‘𝑚) = 𝑓 ↔ ∃𝑚 ∈ (𝑇𝑅)𝑓 = (𝑚𝐽))
140130, 132, 1393bitr4ri 306 . . . . . . . . . . . . . . 15 (∃𝑚 ∈ (𝑇𝑅)((𝑜𝑇 ↦ (𝑜𝐽))‘𝑚) = 𝑓𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅))
141126, 140bitri 277 . . . . . . . . . . . . . 14 (𝑓 ∈ ((𝑜𝑇 ↦ (𝑜𝐽)) “ (𝑇𝑅)) ↔ 𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅))
142141eqriv 2818 . . . . . . . . . . . . 13 ((𝑜𝑇 ↦ (𝑜𝐽)) “ (𝑇𝑅)) = ((ℕ0m 𝐽) ∩ 𝑅)
143 f1oeq3 6606 . . . . . . . . . . . . 13 (((𝑜𝑇 ↦ (𝑜𝐽)) “ (𝑇𝑅)) = ((ℕ0m 𝐽) ∩ 𝑅) → (((𝑜𝑇 ↦ (𝑜𝐽)) ↾ (𝑇𝑅)):(𝑇𝑅)–1-1-onto→((𝑜𝑇 ↦ (𝑜𝐽)) “ (𝑇𝑅)) ↔ ((𝑜𝑇 ↦ (𝑜𝐽)) ↾ (𝑇𝑅)):(𝑇𝑅)–1-1-onto→((ℕ0m 𝐽) ∩ 𝑅)))
144142, 143ax-mp 5 . . . . . . . . . . . 12 (((𝑜𝑇 ↦ (𝑜𝐽)) ↾ (𝑇𝑅)):(𝑇𝑅)–1-1-onto→((𝑜𝑇 ↦ (𝑜𝐽)) “ (𝑇𝑅)) ↔ ((𝑜𝑇 ↦ (𝑜𝐽)) ↾ (𝑇𝑅)):(𝑇𝑅)–1-1-onto→((ℕ0m 𝐽) ∩ 𝑅))
145 resmpt 5905 . . . . . . . . . . . . 13 ((𝑇𝑅) ⊆ 𝑇 → ((𝑜𝑇 ↦ (𝑜𝐽)) ↾ (𝑇𝑅)) = (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽)))
146 f1oeq1 6604 . . . . . . . . . . . . 13 (((𝑜𝑇 ↦ (𝑜𝐽)) ↾ (𝑇𝑅)) = (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽)) → (((𝑜𝑇 ↦ (𝑜𝐽)) ↾ (𝑇𝑅)):(𝑇𝑅)–1-1-onto→((ℕ0m 𝐽) ∩ 𝑅) ↔ (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽)):(𝑇𝑅)–1-1-onto→((ℕ0m 𝐽) ∩ 𝑅)))
147119, 145, 146mp2b 10 . . . . . . . . . . . 12 (((𝑜𝑇 ↦ (𝑜𝐽)) ↾ (𝑇𝑅)):(𝑇𝑅)–1-1-onto→((ℕ0m 𝐽) ∩ 𝑅) ↔ (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽)):(𝑇𝑅)–1-1-onto→((ℕ0m 𝐽) ∩ 𝑅))
148144, 147bitri 277 . . . . . . . . . . 11 (((𝑜𝑇 ↦ (𝑜𝐽)) ↾ (𝑇𝑅)):(𝑇𝑅)–1-1-onto→((𝑜𝑇 ↦ (𝑜𝐽)) “ (𝑇𝑅)) ↔ (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽)):(𝑇𝑅)–1-1-onto→((ℕ0m 𝐽) ∩ 𝑅))
149121, 148mpbi 232 . . . . . . . . . 10 (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽)):(𝑇𝑅)–1-1-onto→((ℕ0m 𝐽) ∩ 𝑅)
150 f1oco 6637 . . . . . . . . . 10 (((𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)):((ℕ0m 𝐽) ∩ 𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ∧ (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽)):(𝑇𝑅)–1-1-onto→((ℕ0m 𝐽) ∩ 𝑅)) → ((𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽))):(𝑇𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin})
151102, 149, 150mp2an 690 . . . . . . . . 9 ((𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽))):(𝑇𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
152 f1of 6615 . . . . . . . . . . . . . 14 ((𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽)):(𝑇𝑅)–1-1-onto→((ℕ0m 𝐽) ∩ 𝑅) → (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽)):(𝑇𝑅)⟶((ℕ0m 𝐽) ∩ 𝑅))
153 eqid 2821 . . . . . . . . . . . . . . . 16 (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽)) = (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽))
154153fmpt 6874 . . . . . . . . . . . . . . 15 (∀𝑜 ∈ (𝑇𝑅)(𝑜𝐽) ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↔ (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽)):(𝑇𝑅)⟶((ℕ0m 𝐽) ∩ 𝑅))
155154biimpri 230 . . . . . . . . . . . . . 14 ((𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽)):(𝑇𝑅)⟶((ℕ0m 𝐽) ∩ 𝑅) → ∀𝑜 ∈ (𝑇𝑅)(𝑜𝐽) ∈ ((ℕ0m 𝐽) ∩ 𝑅))
156149, 152, 155mp2b 10 . . . . . . . . . . . . 13 𝑜 ∈ (𝑇𝑅)(𝑜𝐽) ∈ ((ℕ0m 𝐽) ∩ 𝑅)
157156a1i 11 . . . . . . . . . . . 12 (⊤ → ∀𝑜 ∈ (𝑇𝑅)(𝑜𝐽) ∈ ((ℕ0m 𝐽) ∩ 𝑅))
158 eqidd 2822 . . . . . . . . . . . 12 (⊤ → (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽)) = (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽)))
159 eqidd 2822 . . . . . . . . . . . 12 (⊤ → (𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) = (𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)))
160 coeq2 5729 . . . . . . . . . . . 12 (𝑓 = (𝑜𝐽) → (bits ∘ 𝑓) = (bits ∘ (𝑜𝐽)))
161157, 158, 159, 160fmptcof 6892 . . . . . . . . . . 11 (⊤ → ((𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽))) = (𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽))))
162161eqcomd 2827 . . . . . . . . . 10 (⊤ → (𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽))) = ((𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽))))
163 eqidd 2822 . . . . . . . . . 10 (⊤ → (𝑇𝑅) = (𝑇𝑅))
16449a1i 11 . . . . . . . . . 10 (⊤ → 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin})
165162, 163, 164f1oeq123d 6610 . . . . . . . . 9 (⊤ → ((𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽))):(𝑇𝑅)–1-1-onto𝐻 ↔ ((𝑓 ∈ ((ℕ0m 𝐽) ∩ 𝑅) ↦ (bits ∘ 𝑓)) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝑜𝐽))):(𝑇𝑅)–1-1-onto→{𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}))
166151, 165mpbiri 260 . . . . . . . 8 (⊤ → (𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽))):(𝑇𝑅)–1-1-onto𝐻)
167166mptru 1544 . . . . . . 7 (𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽))):(𝑇𝑅)–1-1-onto𝐻
168 f1oco 6637 . . . . . . 7 ((𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) ∧ (𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽))):(𝑇𝑅)–1-1-onto𝐻) → (𝑀 ∘ (𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽)))):(𝑇𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin))
16951, 167, 168mp2an 690 . . . . . 6 (𝑀 ∘ (𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽)))):(𝑇𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
170 eqidd 2822 . . . . . . . . . . 11 (⊤ → (𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽))) = (𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽))))
171 bitsf 15776 . . . . . . . . . . . . . 14 bits:ℤ⟶𝒫 ℕ0
172 zex 11991 . . . . . . . . . . . . . 14 ℤ ∈ V
173 fex 6989 . . . . . . . . . . . . . 14 ((bits:ℤ⟶𝒫 ℕ0 ∧ ℤ ∈ V) → bits ∈ V)
174171, 172, 173mp2an 690 . . . . . . . . . . . . 13 bits ∈ V
175174, 123coex 7635 . . . . . . . . . . . 12 (bits ∘ (𝑜𝐽)) ∈ V
176175a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑜 ∈ (𝑇𝑅)) → (bits ∘ (𝑜𝐽)) ∈ V)
177170, 176fvmpt2d 6781 . . . . . . . . . 10 ((⊤ ∧ 𝑜 ∈ (𝑇𝑅)) → ((𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽)))‘𝑜) = (bits ∘ (𝑜𝐽)))
178 f1of 6615 . . . . . . . . . . . 12 ((𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽))):(𝑇𝑅)–1-1-onto𝐻 → (𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽))):(𝑇𝑅)⟶𝐻)
179166, 178syl 17 . . . . . . . . . . 11 (⊤ → (𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽))):(𝑇𝑅)⟶𝐻)
180179ffvelrnda 6851 . . . . . . . . . 10 ((⊤ ∧ 𝑜 ∈ (𝑇𝑅)) → ((𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽)))‘𝑜) ∈ 𝐻)
181177, 180eqeltrrd 2914 . . . . . . . . 9 ((⊤ ∧ 𝑜 ∈ (𝑇𝑅)) → (bits ∘ (𝑜𝐽)) ∈ 𝐻)
182 f1ofn 6616 . . . . . . . . . . . 12 (𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) → 𝑀 Fn 𝐻)
18351, 182ax-mp 5 . . . . . . . . . . 11 𝑀 Fn 𝐻
184 dffn5 6724 . . . . . . . . . . 11 (𝑀 Fn 𝐻𝑀 = (𝑟𝐻 ↦ (𝑀𝑟)))
185183, 184mpbi 232 . . . . . . . . . 10 𝑀 = (𝑟𝐻 ↦ (𝑀𝑟))
186185a1i 11 . . . . . . . . 9 (⊤ → 𝑀 = (𝑟𝐻 ↦ (𝑀𝑟)))
187 fveq2 6670 . . . . . . . . 9 (𝑟 = (bits ∘ (𝑜𝐽)) → (𝑀𝑟) = (𝑀‘(bits ∘ (𝑜𝐽))))
188181, 170, 186, 187fmptco 6891 . . . . . . . 8 (⊤ → (𝑀 ∘ (𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽)))) = (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽)))))
189188mptru 1544 . . . . . . 7 (𝑀 ∘ (𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽)))) = (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽))))
190 f1oeq1 6604 . . . . . . 7 ((𝑀 ∘ (𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽)))) = (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽)))) → ((𝑀 ∘ (𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽)))):(𝑇𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) ↔ (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽)))):(𝑇𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)))
191189, 190ax-mp 5 . . . . . 6 ((𝑀 ∘ (𝑜 ∈ (𝑇𝑅) ↦ (bits ∘ (𝑜𝐽)))):(𝑇𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) ↔ (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽)))):(𝑇𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin))
192169, 191mpbi 232 . . . . 5 (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽)))):(𝑇𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
193 f1oco 6637 . . . . 5 (((𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin) ↦ (𝐹𝑎)):(𝒫 (𝐽 × ℕ0) ∩ Fin)–1-1-onto→(𝒫 ℕ ∩ Fin) ∧ (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽)))):(𝑇𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)) → ((𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin) ↦ (𝐹𝑎)) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽))))):(𝑇𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin))
19445, 192, 193mp2an 690 . . . 4 ((𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin) ↦ (𝐹𝑎)) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽))))):(𝑇𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin)
195 simpr 487 . . . . . . . . 9 ((⊤ ∧ 𝑜 ∈ (𝑇𝑅)) → 𝑜 ∈ (𝑇𝑅))
196 fvex 6683 . . . . . . . . 9 (𝑀‘(bits ∘ (𝑜𝐽))) ∈ V
197 eqid 2821 . . . . . . . . . 10 (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽)))) = (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽))))
198197fvmpt2 6779 . . . . . . . . 9 ((𝑜 ∈ (𝑇𝑅) ∧ (𝑀‘(bits ∘ (𝑜𝐽))) ∈ V) → ((𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽))))‘𝑜) = (𝑀‘(bits ∘ (𝑜𝐽))))
199195, 196, 198sylancl 588 . . . . . . . 8 ((⊤ ∧ 𝑜 ∈ (𝑇𝑅)) → ((𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽))))‘𝑜) = (𝑀‘(bits ∘ (𝑜𝐽))))
200 f1of 6615 . . . . . . . . . 10 ((𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽)))):(𝑇𝑅)–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) → (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽)))):(𝑇𝑅)⟶(𝒫 (𝐽 × ℕ0) ∩ Fin))
201192, 200mp1i 13 . . . . . . . . 9 (⊤ → (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽)))):(𝑇𝑅)⟶(𝒫 (𝐽 × ℕ0) ∩ Fin))
202201ffvelrnda 6851 . . . . . . . 8 ((⊤ ∧ 𝑜 ∈ (𝑇𝑅)) → ((𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽))))‘𝑜) ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin))
203199, 202eqeltrrd 2914 . . . . . . 7 ((⊤ ∧ 𝑜 ∈ (𝑇𝑅)) → (𝑀‘(bits ∘ (𝑜𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin))
204 eqidd 2822 . . . . . . 7 (⊤ → (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽)))) = (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽)))))
205 eqidd 2822 . . . . . . 7 (⊤ → (𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin) ↦ (𝐹𝑎)) = (𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin) ↦ (𝐹𝑎)))
206 imaeq2 5925 . . . . . . 7 (𝑎 = (𝑀‘(bits ∘ (𝑜𝐽))) → (𝐹𝑎) = (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))))
207203, 204, 205, 206fmptco 6891 . . . . . 6 (⊤ → ((𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin) ↦ (𝐹𝑎)) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽))))) = (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
208207mptru 1544 . . . . 5 ((𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin) ↦ (𝐹𝑎)) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽))))) = (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))))
209 f1oeq1 6604 . . . . 5 (((𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin) ↦ (𝐹𝑎)) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽))))) = (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))) → (((𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin) ↦ (𝐹𝑎)) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽))))):(𝑇𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin) ↔ (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))):(𝑇𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin)))
210208, 209ax-mp 5 . . . 4 (((𝑎 ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin) ↦ (𝐹𝑎)) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝑀‘(bits ∘ (𝑜𝐽))))):(𝑇𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin) ↔ (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))):(𝑇𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin))
211194, 210mpbi 232 . . 3 (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))):(𝑇𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin)
212 f1oco 6637 . . 3 ((((𝟭‘ℕ) ↾ Fin):(𝒫 ℕ ∩ Fin)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅) ∧ (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))):(𝑇𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin)) → (((𝟭‘ℕ) ↾ Fin) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))))):(𝑇𝑅)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅))
21340, 211, 212mp2an 690 . 2 (((𝟭‘ℕ) ↾ Fin) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))))):(𝑇𝑅)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅)
214 eulerpart.g . . . 4 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
21542mpoexg 7774 . . . . . . . . . 10 ((𝐽 ∈ V ∧ ℕ0 ∈ V) → 𝐹 ∈ V)
21654, 56, 215mp2an 690 . . . . . . . . 9 𝐹 ∈ V
217 imaexg 7620 . . . . . . . . 9 (𝐹 ∈ V → (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))) ∈ V)
218216, 217ax-mp 5 . . . . . . . 8 (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))) ∈ V
219 eqid 2821 . . . . . . . . 9 (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))) = (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))))
220219fvmpt2 6779 . . . . . . . 8 ((𝑜 ∈ (𝑇𝑅) ∧ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))) ∈ V) → ((𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))))‘𝑜) = (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))))
221195, 218, 220sylancl 588 . . . . . . 7 ((⊤ ∧ 𝑜 ∈ (𝑇𝑅)) → ((𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))))‘𝑜) = (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))))
222 f1of 6615 . . . . . . . . 9 ((𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))):(𝑇𝑅)–1-1-onto→(𝒫 ℕ ∩ Fin) → (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))):(𝑇𝑅)⟶(𝒫 ℕ ∩ Fin))
223211, 222mp1i 13 . . . . . . . 8 (⊤ → (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))):(𝑇𝑅)⟶(𝒫 ℕ ∩ Fin))
224223ffvelrnda 6851 . . . . . . 7 ((⊤ ∧ 𝑜 ∈ (𝑇𝑅)) → ((𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))))‘𝑜) ∈ (𝒫 ℕ ∩ Fin))
225221, 224eqeltrrd 2914 . . . . . 6 ((⊤ ∧ 𝑜 ∈ (𝑇𝑅)) → (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))) ∈ (𝒫 ℕ ∩ Fin))
226 eqidd 2822 . . . . . 6 (⊤ → (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))) = (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
227 indf1o 31283 . . . . . . . . . . 11 (ℕ ∈ V → (𝟭‘ℕ):𝒫 ℕ–1-1-onto→({0, 1} ↑m ℕ))
228 f1ofn 6616 . . . . . . . . . . 11 ((𝟭‘ℕ):𝒫 ℕ–1-1-onto→({0, 1} ↑m ℕ) → (𝟭‘ℕ) Fn 𝒫 ℕ)
2291, 227, 228mp2b 10 . . . . . . . . . 10 (𝟭‘ℕ) Fn 𝒫 ℕ
230 dffn5 6724 . . . . . . . . . 10 ((𝟭‘ℕ) Fn 𝒫 ℕ ↔ (𝟭‘ℕ) = (𝑏 ∈ 𝒫 ℕ ↦ ((𝟭‘ℕ)‘𝑏)))
231229, 230mpbi 232 . . . . . . . . 9 (𝟭‘ℕ) = (𝑏 ∈ 𝒫 ℕ ↦ ((𝟭‘ℕ)‘𝑏))
232231reseq1i 5849 . . . . . . . 8 ((𝟭‘ℕ) ↾ Fin) = ((𝑏 ∈ 𝒫 ℕ ↦ ((𝟭‘ℕ)‘𝑏)) ↾ Fin)
233 resmpt3 5906 . . . . . . . 8 ((𝑏 ∈ 𝒫 ℕ ↦ ((𝟭‘ℕ)‘𝑏)) ↾ Fin) = (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ ((𝟭‘ℕ)‘𝑏))
234232, 233eqtri 2844 . . . . . . 7 ((𝟭‘ℕ) ↾ Fin) = (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ ((𝟭‘ℕ)‘𝑏))
235234a1i 11 . . . . . 6 (⊤ → ((𝟭‘ℕ) ↾ Fin) = (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ ((𝟭‘ℕ)‘𝑏)))
236 fveq2 6670 . . . . . 6 (𝑏 = (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))) → ((𝟭‘ℕ)‘𝑏) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
237225, 226, 235, 236fmptco 6891 . . . . 5 (⊤ → (((𝟭‘ℕ) ↾ Fin) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))))) = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))))))
238237mptru 1544 . . . 4 (((𝟭‘ℕ) ↾ Fin) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))))) = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
239214, 238eqtr4i 2847 . . 3 𝐺 = (((𝟭‘ℕ) ↾ Fin) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
240 f1oeq1 6604 . . 3 (𝐺 = (((𝟭‘ℕ) ↾ Fin) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))))) → (𝐺:(𝑇𝑅)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅) ↔ (((𝟭‘ℕ) ↾ Fin) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))))):(𝑇𝑅)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅)))
241239, 240ax-mp 5 . 2 (𝐺:(𝑇𝑅)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅) ↔ (((𝟭‘ℕ) ↾ Fin) ∘ (𝑜 ∈ (𝑇𝑅) ↦ (𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽)))))):(𝑇𝑅)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅))
242213, 241mpbir 233 1 𝐺:(𝑇𝑅)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398  w3a 1083   = wceq 1537  wtru 1538  wcel 2114  {cab 2799  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539  {csn 4567  {cpr 4569   class class class wbr 5066  {copab 5128  cmpt 5146   × cxp 5553  ccnv 5554  ran crn 5556  cres 5557  cima 5558  ccom 5559  Fun wfun 6349   Fn wfn 6350  wf 6351  1-1wf1 6352  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  cmpo 7158   supp csupp 7830  m cmap 8406  Fincfn 8509   finSupp cfsupp 8833  0cc0 10537  1c1 10538   · cmul 10542  cle 10676  cn 11638  2c2 11693  0cn0 11898  cz 11982  cexp 13430  Σcsu 15042  cdvds 15607  bitscbits 15768  𝟭cind 31269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-ac2 9885  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-acn 9371  df-ac 9542  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-dvds 15608  df-bits 15771  df-ind 31270
This theorem is referenced by:  eulerpartlemgf  31637  eulerpartlemgs2  31638  eulerpartlemn  31639
  Copyright terms: Public domain W3C validator