Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcval4 | Structured version Visualization version GIF version |
Description: The value of the preimage mapping operator can be restricted to preimages in the base set of the topology. Cf. orvcval 32424. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
orvccel.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
orvccel.2 | ⊢ (𝜑 → 𝐽 ∈ Top) |
orvccel.3 | ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) |
orvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
orvcval4 | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orvccel.1 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
2 | orvccel.2 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Top) | |
3 | 2 | sgsiga 32110 | . . . . 5 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
4 | orvccel.3 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) | |
5 | 1, 3, 4 | isanmbfm 32223 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ∪ ran MblFnM) |
6 | 5 | mbfmfun 32221 | . . 3 ⊢ (𝜑 → Fun 𝑋) |
7 | 1, 3, 4 | mbfmf 32222 | . . . . 5 ⊢ (𝜑 → 𝑋:∪ 𝑆⟶∪ (sigaGen‘𝐽)) |
8 | elex 3450 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝐽 ∈ V) | |
9 | unisg 32111 | . . . . . . 7 ⊢ (𝐽 ∈ V → ∪ (sigaGen‘𝐽) = ∪ 𝐽) | |
10 | 2, 8, 9 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → ∪ (sigaGen‘𝐽) = ∪ 𝐽) |
11 | 10 | feq3d 6587 | . . . . 5 ⊢ (𝜑 → (𝑋:∪ 𝑆⟶∪ (sigaGen‘𝐽) ↔ 𝑋:∪ 𝑆⟶∪ 𝐽)) |
12 | 7, 11 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝑋:∪ 𝑆⟶∪ 𝐽) |
13 | 12 | frnd 6608 | . . 3 ⊢ (𝜑 → ran 𝑋 ⊆ ∪ 𝐽) |
14 | fimacnvinrn2 6950 | . . 3 ⊢ ((Fun 𝑋 ∧ ran 𝑋 ⊆ ∪ 𝐽) → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = (◡𝑋 “ ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽))) | |
15 | 6, 13, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = (◡𝑋 “ ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽))) |
16 | orvccel.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
17 | 6, 4, 16 | orvcval 32424 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
18 | dfrab2 4244 | . . . 4 ⊢ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} = ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽) | |
19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} = ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽)) |
20 | 19 | imaeq2d 5969 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴}) = (◡𝑋 “ ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽))) |
21 | 15, 17, 20 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {cab 2715 {crab 3068 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∪ cuni 4839 class class class wbr 5074 ◡ccnv 5588 ran crn 5590 “ cima 5592 Fun wfun 6427 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Topctop 22042 sigAlgebracsiga 32076 sigaGencsigagen 32106 MblFnMcmbfm 32217 ∘RV/𝑐corvc 32422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 df-siga 32077 df-sigagen 32107 df-mbfm 32218 df-orvc 32423 |
This theorem is referenced by: orvcoel 32428 orvccel 32429 orrvcval4 32431 |
Copyright terms: Public domain | W3C validator |