Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcval4 Structured version   Visualization version   GIF version

Theorem orvcval4 32327
Description: The value of the preimage mapping operator can be restricted to preimages in the base set of the topology. Cf. orvcval 32324. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orvccel.1 (𝜑𝑆 ran sigAlgebra)
orvccel.2 (𝜑𝐽 ∈ Top)
orvccel.3 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
orvccel.4 (𝜑𝐴𝑉)
Assertion
Ref Expression
orvcval4 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋   𝑦,𝐽
Allowed substitution hints:   𝜑(𝑦)   𝑆(𝑦)   𝑉(𝑦)

Proof of Theorem orvcval4
StepHypRef Expression
1 orvccel.1 . . . . 5 (𝜑𝑆 ran sigAlgebra)
2 orvccel.2 . . . . . 6 (𝜑𝐽 ∈ Top)
32sgsiga 32010 . . . . 5 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
4 orvccel.3 . . . . 5 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
51, 3, 4isanmbfm 32123 . . . 4 (𝜑𝑋 ran MblFnM)
65mbfmfun 32121 . . 3 (𝜑 → Fun 𝑋)
71, 3, 4mbfmf 32122 . . . . 5 (𝜑𝑋: 𝑆 (sigaGen‘𝐽))
8 elex 3440 . . . . . . 7 (𝐽 ∈ Top → 𝐽 ∈ V)
9 unisg 32011 . . . . . . 7 (𝐽 ∈ V → (sigaGen‘𝐽) = 𝐽)
102, 8, 93syl 18 . . . . . 6 (𝜑 (sigaGen‘𝐽) = 𝐽)
1110feq3d 6571 . . . . 5 (𝜑 → (𝑋: 𝑆 (sigaGen‘𝐽) ↔ 𝑋: 𝑆 𝐽))
127, 11mpbid 231 . . . 4 (𝜑𝑋: 𝑆 𝐽)
1312frnd 6592 . . 3 (𝜑 → ran 𝑋 𝐽)
14 fimacnvinrn2 6932 . . 3 ((Fun 𝑋 ∧ ran 𝑋 𝐽) → (𝑋 “ {𝑦𝑦𝑅𝐴}) = (𝑋 “ ({𝑦𝑦𝑅𝐴} ∩ 𝐽)))
156, 13, 14syl2anc 583 . 2 (𝜑 → (𝑋 “ {𝑦𝑦𝑅𝐴}) = (𝑋 “ ({𝑦𝑦𝑅𝐴} ∩ 𝐽)))
16 orvccel.4 . . 3 (𝜑𝐴𝑉)
176, 4, 16orvcval 32324 . 2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
18 dfrab2 4241 . . . 4 {𝑦 𝐽𝑦𝑅𝐴} = ({𝑦𝑦𝑅𝐴} ∩ 𝐽)
1918a1i 11 . . 3 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} = ({𝑦𝑦𝑅𝐴} ∩ 𝐽))
2019imaeq2d 5958 . 2 (𝜑 → (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}) = (𝑋 “ ({𝑦𝑦𝑅𝐴} ∩ 𝐽)))
2115, 17, 203eqtr4d 2788 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {cab 2715  {crab 3067  Vcvv 3422  cin 3882  wss 3883   cuni 4836   class class class wbr 5070  ccnv 5579  ran crn 5581  cima 5583  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255  Topctop 21950  sigAlgebracsiga 31976  sigaGencsigagen 32006  MblFnMcmbfm 32117  RV/𝑐corvc 32322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-siga 31977  df-sigagen 32007  df-mbfm 32118  df-orvc 32323
This theorem is referenced by:  orvcoel  32328  orvccel  32329  orrvcval4  32331
  Copyright terms: Public domain W3C validator