Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcval4 | Structured version Visualization version GIF version |
Description: The value of the preimage mapping operator can be restricted to preimages in the base set of the topology. Cf. orvcval 32724. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
orvccel.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
orvccel.2 | ⊢ (𝜑 → 𝐽 ∈ Top) |
orvccel.3 | ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) |
orvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
orvcval4 | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orvccel.3 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) | |
2 | 1 | isanmbfm 32523 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ∪ ran MblFnM) |
3 | 2 | mbfmfun 32519 | . . 3 ⊢ (𝜑 → Fun 𝑋) |
4 | orvccel.1 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
5 | orvccel.2 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) | |
6 | 5 | sgsiga 32408 | . . . . . 6 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
7 | 4, 6, 1 | mbfmf 32520 | . . . . 5 ⊢ (𝜑 → 𝑋:∪ 𝑆⟶∪ (sigaGen‘𝐽)) |
8 | elex 3459 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝐽 ∈ V) | |
9 | unisg 32409 | . . . . . . 7 ⊢ (𝐽 ∈ V → ∪ (sigaGen‘𝐽) = ∪ 𝐽) | |
10 | 5, 8, 9 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → ∪ (sigaGen‘𝐽) = ∪ 𝐽) |
11 | 10 | feq3d 6638 | . . . . 5 ⊢ (𝜑 → (𝑋:∪ 𝑆⟶∪ (sigaGen‘𝐽) ↔ 𝑋:∪ 𝑆⟶∪ 𝐽)) |
12 | 7, 11 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝑋:∪ 𝑆⟶∪ 𝐽) |
13 | 12 | frnd 6659 | . . 3 ⊢ (𝜑 → ran 𝑋 ⊆ ∪ 𝐽) |
14 | fimacnvinrn2 7006 | . . 3 ⊢ ((Fun 𝑋 ∧ ran 𝑋 ⊆ ∪ 𝐽) → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = (◡𝑋 “ ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽))) | |
15 | 3, 13, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = (◡𝑋 “ ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽))) |
16 | orvccel.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
17 | 3, 1, 16 | orvcval 32724 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
18 | dfrab2 4257 | . . . 4 ⊢ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} = ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽) | |
19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} = ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽)) |
20 | 19 | imaeq2d 5999 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴}) = (◡𝑋 “ ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽))) |
21 | 15, 17, 20 | 3eqtr4d 2786 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {cab 2713 {crab 3403 Vcvv 3441 ∩ cin 3897 ⊆ wss 3898 ∪ cuni 4852 class class class wbr 5092 ◡ccnv 5619 ran crn 5621 “ cima 5623 Fun wfun 6473 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 Topctop 22148 sigAlgebracsiga 32374 sigaGencsigagen 32404 MblFnMcmbfm 32515 ∘RV/𝑐corvc 32722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-fo 6485 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-1st 7899 df-2nd 7900 df-map 8688 df-siga 32375 df-sigagen 32405 df-mbfm 32516 df-orvc 32723 |
This theorem is referenced by: orvcoel 32728 orvccel 32729 orrvcval4 32731 |
Copyright terms: Public domain | W3C validator |