![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcval4 | Structured version Visualization version GIF version |
Description: The value of the preimage mapping operator can be restricted to preimages in the base set of the topology. Cf. orvcval 33451. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
orvccel.1 | β’ (π β π β βͺ ran sigAlgebra) |
orvccel.2 | β’ (π β π½ β Top) |
orvccel.3 | β’ (π β π β (πMblFnM(sigaGenβπ½))) |
orvccel.4 | β’ (π β π΄ β π) |
Ref | Expression |
---|---|
orvcval4 | β’ (π β (πβRV/ππ π΄) = (β‘π β {π¦ β βͺ π½ β£ π¦π π΄})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orvccel.3 | . . . . 5 β’ (π β π β (πMblFnM(sigaGenβπ½))) | |
2 | 1 | isanmbfm 33250 | . . . 4 β’ (π β π β βͺ ran MblFnM) |
3 | 2 | mbfmfun 33246 | . . 3 β’ (π β Fun π) |
4 | orvccel.1 | . . . . . 6 β’ (π β π β βͺ ran sigAlgebra) | |
5 | orvccel.2 | . . . . . . 7 β’ (π β π½ β Top) | |
6 | 5 | sgsiga 33135 | . . . . . 6 β’ (π β (sigaGenβπ½) β βͺ ran sigAlgebra) |
7 | 4, 6, 1 | mbfmf 33247 | . . . . 5 β’ (π β π:βͺ πβΆβͺ (sigaGenβπ½)) |
8 | elex 3492 | . . . . . . 7 β’ (π½ β Top β π½ β V) | |
9 | unisg 33136 | . . . . . . 7 β’ (π½ β V β βͺ (sigaGenβπ½) = βͺ π½) | |
10 | 5, 8, 9 | 3syl 18 | . . . . . 6 β’ (π β βͺ (sigaGenβπ½) = βͺ π½) |
11 | 10 | feq3d 6704 | . . . . 5 β’ (π β (π:βͺ πβΆβͺ (sigaGenβπ½) β π:βͺ πβΆβͺ π½)) |
12 | 7, 11 | mpbid 231 | . . . 4 β’ (π β π:βͺ πβΆβͺ π½) |
13 | 12 | frnd 6725 | . . 3 β’ (π β ran π β βͺ π½) |
14 | fimacnvinrn2 7074 | . . 3 β’ ((Fun π β§ ran π β βͺ π½) β (β‘π β {π¦ β£ π¦π π΄}) = (β‘π β ({π¦ β£ π¦π π΄} β© βͺ π½))) | |
15 | 3, 13, 14 | syl2anc 584 | . 2 β’ (π β (β‘π β {π¦ β£ π¦π π΄}) = (β‘π β ({π¦ β£ π¦π π΄} β© βͺ π½))) |
16 | orvccel.4 | . . 3 β’ (π β π΄ β π) | |
17 | 3, 1, 16 | orvcval 33451 | . 2 β’ (π β (πβRV/ππ π΄) = (β‘π β {π¦ β£ π¦π π΄})) |
18 | dfrab2 4310 | . . . 4 β’ {π¦ β βͺ π½ β£ π¦π π΄} = ({π¦ β£ π¦π π΄} β© βͺ π½) | |
19 | 18 | a1i 11 | . . 3 β’ (π β {π¦ β βͺ π½ β£ π¦π π΄} = ({π¦ β£ π¦π π΄} β© βͺ π½)) |
20 | 19 | imaeq2d 6059 | . 2 β’ (π β (β‘π β {π¦ β βͺ π½ β£ π¦π π΄}) = (β‘π β ({π¦ β£ π¦π π΄} β© βͺ π½))) |
21 | 15, 17, 20 | 3eqtr4d 2782 | 1 β’ (π β (πβRV/ππ π΄) = (β‘π β {π¦ β βͺ π½ β£ π¦π π΄})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 {cab 2709 {crab 3432 Vcvv 3474 β© cin 3947 β wss 3948 βͺ cuni 4908 class class class wbr 5148 β‘ccnv 5675 ran crn 5677 β cima 5679 Fun wfun 6537 βΆwf 6539 βcfv 6543 (class class class)co 7408 Topctop 22394 sigAlgebracsiga 33101 sigaGencsigagen 33131 MblFnMcmbfm 33242 βRV/πcorvc 33449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-map 8821 df-siga 33102 df-sigagen 33132 df-mbfm 33243 df-orvc 33450 |
This theorem is referenced by: orvcoel 33455 orvccel 33456 orrvcval4 33458 |
Copyright terms: Public domain | W3C validator |