| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcval4 | Structured version Visualization version GIF version | ||
| Description: The value of the preimage mapping operator can be restricted to preimages in the base set of the topology. Cf. orvcval 34428. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| orvccel.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| orvccel.2 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| orvccel.3 | ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) |
| orvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| orvcval4 | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orvccel.3 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) | |
| 2 | 1 | isanmbfm 34226 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ∪ ran MblFnM) |
| 3 | 2 | mbfmfun 34222 | . . 3 ⊢ (𝜑 → Fun 𝑋) |
| 4 | orvccel.1 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 5 | orvccel.2 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 6 | 5 | sgsiga 34111 | . . . . . 6 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
| 7 | 4, 6, 1 | mbfmf 34223 | . . . . 5 ⊢ (𝜑 → 𝑋:∪ 𝑆⟶∪ (sigaGen‘𝐽)) |
| 8 | elex 3459 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝐽 ∈ V) | |
| 9 | unisg 34112 | . . . . . . 7 ⊢ (𝐽 ∈ V → ∪ (sigaGen‘𝐽) = ∪ 𝐽) | |
| 10 | 5, 8, 9 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → ∪ (sigaGen‘𝐽) = ∪ 𝐽) |
| 11 | 10 | feq3d 6641 | . . . . 5 ⊢ (𝜑 → (𝑋:∪ 𝑆⟶∪ (sigaGen‘𝐽) ↔ 𝑋:∪ 𝑆⟶∪ 𝐽)) |
| 12 | 7, 11 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝑋:∪ 𝑆⟶∪ 𝐽) |
| 13 | 12 | frnd 6664 | . . 3 ⊢ (𝜑 → ran 𝑋 ⊆ ∪ 𝐽) |
| 14 | fimacnvinrn2 7010 | . . 3 ⊢ ((Fun 𝑋 ∧ ran 𝑋 ⊆ ∪ 𝐽) → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = (◡𝑋 “ ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽))) | |
| 15 | 3, 13, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = (◡𝑋 “ ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽))) |
| 16 | orvccel.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 17 | 3, 1, 16 | orvcval 34428 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
| 18 | dfrab2 4273 | . . . 4 ⊢ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} = ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽) | |
| 19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} = ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽)) |
| 20 | 19 | imaeq2d 6015 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴}) = (◡𝑋 “ ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽))) |
| 21 | 15, 17, 20 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3396 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 ∪ cuni 4861 class class class wbr 5095 ◡ccnv 5622 ran crn 5624 “ cima 5626 Fun wfun 6480 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 Topctop 22796 sigAlgebracsiga 34077 sigaGencsigagen 34107 MblFnMcmbfm 34218 ∘RV/𝑐corvc 34426 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fo 6492 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-siga 34078 df-sigagen 34108 df-mbfm 34219 df-orvc 34427 |
| This theorem is referenced by: orvcoel 34432 orvccel 34433 orrvcval4 34435 |
| Copyright terms: Public domain | W3C validator |