![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcval4 | Structured version Visualization version GIF version |
Description: The value of the preimage mapping operator can be restricted to preimages in the base set of the topology. Cf. orvcval 34422. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
orvccel.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
orvccel.2 | ⊢ (𝜑 → 𝐽 ∈ Top) |
orvccel.3 | ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) |
orvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
orvcval4 | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orvccel.3 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) | |
2 | 1 | isanmbfm 34221 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ∪ ran MblFnM) |
3 | 2 | mbfmfun 34217 | . . 3 ⊢ (𝜑 → Fun 𝑋) |
4 | orvccel.1 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
5 | orvccel.2 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) | |
6 | 5 | sgsiga 34106 | . . . . . 6 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
7 | 4, 6, 1 | mbfmf 34218 | . . . . 5 ⊢ (𝜑 → 𝑋:∪ 𝑆⟶∪ (sigaGen‘𝐽)) |
8 | elex 3509 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝐽 ∈ V) | |
9 | unisg 34107 | . . . . . . 7 ⊢ (𝐽 ∈ V → ∪ (sigaGen‘𝐽) = ∪ 𝐽) | |
10 | 5, 8, 9 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → ∪ (sigaGen‘𝐽) = ∪ 𝐽) |
11 | 10 | feq3d 6734 | . . . . 5 ⊢ (𝜑 → (𝑋:∪ 𝑆⟶∪ (sigaGen‘𝐽) ↔ 𝑋:∪ 𝑆⟶∪ 𝐽)) |
12 | 7, 11 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝑋:∪ 𝑆⟶∪ 𝐽) |
13 | 12 | frnd 6755 | . . 3 ⊢ (𝜑 → ran 𝑋 ⊆ ∪ 𝐽) |
14 | fimacnvinrn2 7106 | . . 3 ⊢ ((Fun 𝑋 ∧ ran 𝑋 ⊆ ∪ 𝐽) → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = (◡𝑋 “ ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽))) | |
15 | 3, 13, 14 | syl2anc 583 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = (◡𝑋 “ ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽))) |
16 | orvccel.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
17 | 3, 1, 16 | orvcval 34422 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
18 | dfrab2 4339 | . . . 4 ⊢ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} = ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽) | |
19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} = ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽)) |
20 | 19 | imaeq2d 6089 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴}) = (◡𝑋 “ ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽))) |
21 | 15, 17, 20 | 3eqtr4d 2790 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {cab 2717 {crab 3443 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∪ cuni 4931 class class class wbr 5166 ◡ccnv 5699 ran crn 5701 “ cima 5703 Fun wfun 6567 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Topctop 22920 sigAlgebracsiga 34072 sigaGencsigagen 34102 MblFnMcmbfm 34213 ∘RV/𝑐corvc 34420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-siga 34073 df-sigagen 34103 df-mbfm 34214 df-orvc 34421 |
This theorem is referenced by: orvcoel 34426 orvccel 34427 orrvcval4 34429 |
Copyright terms: Public domain | W3C validator |