Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcval4 Structured version   Visualization version   GIF version

Theorem orvcval4 34425
Description: The value of the preimage mapping operator can be restricted to preimages in the base set of the topology. Cf. orvcval 34422. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orvccel.1 (𝜑𝑆 ran sigAlgebra)
orvccel.2 (𝜑𝐽 ∈ Top)
orvccel.3 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
orvccel.4 (𝜑𝐴𝑉)
Assertion
Ref Expression
orvcval4 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋   𝑦,𝐽
Allowed substitution hints:   𝜑(𝑦)   𝑆(𝑦)   𝑉(𝑦)

Proof of Theorem orvcval4
StepHypRef Expression
1 orvccel.3 . . . . 5 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
21isanmbfm 34221 . . . 4 (𝜑𝑋 ran MblFnM)
32mbfmfun 34217 . . 3 (𝜑 → Fun 𝑋)
4 orvccel.1 . . . . . 6 (𝜑𝑆 ran sigAlgebra)
5 orvccel.2 . . . . . . 7 (𝜑𝐽 ∈ Top)
65sgsiga 34106 . . . . . 6 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
74, 6, 1mbfmf 34218 . . . . 5 (𝜑𝑋: 𝑆 (sigaGen‘𝐽))
8 elex 3509 . . . . . . 7 (𝐽 ∈ Top → 𝐽 ∈ V)
9 unisg 34107 . . . . . . 7 (𝐽 ∈ V → (sigaGen‘𝐽) = 𝐽)
105, 8, 93syl 18 . . . . . 6 (𝜑 (sigaGen‘𝐽) = 𝐽)
1110feq3d 6734 . . . . 5 (𝜑 → (𝑋: 𝑆 (sigaGen‘𝐽) ↔ 𝑋: 𝑆 𝐽))
127, 11mpbid 232 . . . 4 (𝜑𝑋: 𝑆 𝐽)
1312frnd 6755 . . 3 (𝜑 → ran 𝑋 𝐽)
14 fimacnvinrn2 7106 . . 3 ((Fun 𝑋 ∧ ran 𝑋 𝐽) → (𝑋 “ {𝑦𝑦𝑅𝐴}) = (𝑋 “ ({𝑦𝑦𝑅𝐴} ∩ 𝐽)))
153, 13, 14syl2anc 583 . 2 (𝜑 → (𝑋 “ {𝑦𝑦𝑅𝐴}) = (𝑋 “ ({𝑦𝑦𝑅𝐴} ∩ 𝐽)))
16 orvccel.4 . . 3 (𝜑𝐴𝑉)
173, 1, 16orvcval 34422 . 2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
18 dfrab2 4339 . . . 4 {𝑦 𝐽𝑦𝑅𝐴} = ({𝑦𝑦𝑅𝐴} ∩ 𝐽)
1918a1i 11 . . 3 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} = ({𝑦𝑦𝑅𝐴} ∩ 𝐽))
2019imaeq2d 6089 . 2 (𝜑 → (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}) = (𝑋 “ ({𝑦𝑦𝑅𝐴} ∩ 𝐽)))
2115, 17, 203eqtr4d 2790 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {cab 2717  {crab 3443  Vcvv 3488  cin 3975  wss 3976   cuni 4931   class class class wbr 5166  ccnv 5699  ran crn 5701  cima 5703  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  Topctop 22920  sigAlgebracsiga 34072  sigaGencsigagen 34102  MblFnMcmbfm 34213  RV/𝑐corvc 34420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-siga 34073  df-sigagen 34103  df-mbfm 34214  df-orvc 34421
This theorem is referenced by:  orvcoel  34426  orvccel  34427  orrvcval4  34429
  Copyright terms: Public domain W3C validator