| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcval4 | Structured version Visualization version GIF version | ||
| Description: The value of the preimage mapping operator can be restricted to preimages in the base set of the topology. Cf. orvcval 34463. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| orvccel.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| orvccel.2 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| orvccel.3 | ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) |
| orvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| orvcval4 | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orvccel.3 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) | |
| 2 | 1 | isanmbfm 34261 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ∪ ran MblFnM) |
| 3 | 2 | mbfmfun 34258 | . . 3 ⊢ (𝜑 → Fun 𝑋) |
| 4 | orvccel.1 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 5 | orvccel.2 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 6 | 5 | sgsiga 34147 | . . . . . 6 ⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
| 7 | 4, 6, 1 | mbfmf 34259 | . . . . 5 ⊢ (𝜑 → 𝑋:∪ 𝑆⟶∪ (sigaGen‘𝐽)) |
| 8 | elex 3457 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝐽 ∈ V) | |
| 9 | unisg 34148 | . . . . . . 7 ⊢ (𝐽 ∈ V → ∪ (sigaGen‘𝐽) = ∪ 𝐽) | |
| 10 | 5, 8, 9 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → ∪ (sigaGen‘𝐽) = ∪ 𝐽) |
| 11 | 10 | feq3d 6631 | . . . . 5 ⊢ (𝜑 → (𝑋:∪ 𝑆⟶∪ (sigaGen‘𝐽) ↔ 𝑋:∪ 𝑆⟶∪ 𝐽)) |
| 12 | 7, 11 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝑋:∪ 𝑆⟶∪ 𝐽) |
| 13 | 12 | frnd 6654 | . . 3 ⊢ (𝜑 → ran 𝑋 ⊆ ∪ 𝐽) |
| 14 | fimacnvinrn2 7000 | . . 3 ⊢ ((Fun 𝑋 ∧ ran 𝑋 ⊆ ∪ 𝐽) → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = (◡𝑋 “ ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽))) | |
| 15 | 3, 13, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = (◡𝑋 “ ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽))) |
| 16 | orvccel.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 17 | 3, 1, 16 | orvcval 34463 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
| 18 | dfrab2 4265 | . . . 4 ⊢ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} = ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽) | |
| 19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} = ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽)) |
| 20 | 19 | imaeq2d 6004 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴}) = (◡𝑋 “ ({𝑦 ∣ 𝑦𝑅𝐴} ∩ ∪ 𝐽))) |
| 21 | 15, 17, 20 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {cab 2709 {crab 3395 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 ∪ cuni 4854 class class class wbr 5086 ◡ccnv 5610 ran crn 5612 “ cima 5614 Fun wfun 6470 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 Topctop 22803 sigAlgebracsiga 34113 sigaGencsigagen 34143 MblFnMcmbfm 34254 ∘RV/𝑐corvc 34461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fo 6482 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-map 8747 df-siga 34114 df-sigagen 34144 df-mbfm 34255 df-orvc 34462 |
| This theorem is referenced by: orvcoel 34467 orvccel 34468 orrvcval4 34470 |
| Copyright terms: Public domain | W3C validator |