Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcval4 Structured version   Visualization version   GIF version

Theorem orvcval4 34431
Description: The value of the preimage mapping operator can be restricted to preimages in the base set of the topology. Cf. orvcval 34428. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orvccel.1 (𝜑𝑆 ran sigAlgebra)
orvccel.2 (𝜑𝐽 ∈ Top)
orvccel.3 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
orvccel.4 (𝜑𝐴𝑉)
Assertion
Ref Expression
orvcval4 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋   𝑦,𝐽
Allowed substitution hints:   𝜑(𝑦)   𝑆(𝑦)   𝑉(𝑦)

Proof of Theorem orvcval4
StepHypRef Expression
1 orvccel.3 . . . . 5 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
21isanmbfm 34226 . . . 4 (𝜑𝑋 ran MblFnM)
32mbfmfun 34222 . . 3 (𝜑 → Fun 𝑋)
4 orvccel.1 . . . . . 6 (𝜑𝑆 ran sigAlgebra)
5 orvccel.2 . . . . . . 7 (𝜑𝐽 ∈ Top)
65sgsiga 34111 . . . . . 6 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
74, 6, 1mbfmf 34223 . . . . 5 (𝜑𝑋: 𝑆 (sigaGen‘𝐽))
8 elex 3459 . . . . . . 7 (𝐽 ∈ Top → 𝐽 ∈ V)
9 unisg 34112 . . . . . . 7 (𝐽 ∈ V → (sigaGen‘𝐽) = 𝐽)
105, 8, 93syl 18 . . . . . 6 (𝜑 (sigaGen‘𝐽) = 𝐽)
1110feq3d 6641 . . . . 5 (𝜑 → (𝑋: 𝑆 (sigaGen‘𝐽) ↔ 𝑋: 𝑆 𝐽))
127, 11mpbid 232 . . . 4 (𝜑𝑋: 𝑆 𝐽)
1312frnd 6664 . . 3 (𝜑 → ran 𝑋 𝐽)
14 fimacnvinrn2 7010 . . 3 ((Fun 𝑋 ∧ ran 𝑋 𝐽) → (𝑋 “ {𝑦𝑦𝑅𝐴}) = (𝑋 “ ({𝑦𝑦𝑅𝐴} ∩ 𝐽)))
153, 13, 14syl2anc 584 . 2 (𝜑 → (𝑋 “ {𝑦𝑦𝑅𝐴}) = (𝑋 “ ({𝑦𝑦𝑅𝐴} ∩ 𝐽)))
16 orvccel.4 . . 3 (𝜑𝐴𝑉)
173, 1, 16orvcval 34428 . 2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
18 dfrab2 4273 . . . 4 {𝑦 𝐽𝑦𝑅𝐴} = ({𝑦𝑦𝑅𝐴} ∩ 𝐽)
1918a1i 11 . . 3 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} = ({𝑦𝑦𝑅𝐴} ∩ 𝐽))
2019imaeq2d 6015 . 2 (𝜑 → (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}) = (𝑋 “ ({𝑦𝑦𝑅𝐴} ∩ 𝐽)))
2115, 17, 203eqtr4d 2774 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  {crab 3396  Vcvv 3438  cin 3904  wss 3905   cuni 4861   class class class wbr 5095  ccnv 5622  ran crn 5624  cima 5626  Fun wfun 6480  wf 6482  cfv 6486  (class class class)co 7353  Topctop 22796  sigAlgebracsiga 34077  sigaGencsigagen 34107  MblFnMcmbfm 34218  RV/𝑐corvc 34426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-siga 34078  df-sigagen 34108  df-mbfm 34219  df-orvc 34427
This theorem is referenced by:  orvcoel  34432  orvccel  34433  orrvcval4  34435
  Copyright terms: Public domain W3C validator