| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psdmullem | Structured version Visualization version GIF version | ||
| Description: Lemma for psdmul 22104. Transitive law for union of class difference. (Contributed by SN, 5-May-2025.) |
| Ref | Expression |
|---|---|
| psdmullem.cb | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| psdmullem.ba | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| psdmullem | ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐶)) = (𝐴 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undif3 4275 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐶)) = (((𝐴 ∖ 𝐵) ∪ 𝐵) ∖ (𝐶 ∖ (𝐴 ∖ 𝐵))) | |
| 2 | psdmullem.ba | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 3 | undifr 4458 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ ((𝐴 ∖ 𝐵) ∪ 𝐵) = 𝐴) | |
| 4 | 2, 3 | sylib 218 | . . 3 ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∪ 𝐵) = 𝐴) |
| 5 | difdif2 4271 | . . . 4 ⊢ (𝐶 ∖ (𝐴 ∖ 𝐵)) = ((𝐶 ∖ 𝐴) ∪ (𝐶 ∩ 𝐵)) | |
| 6 | psdmullem.cb | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
| 7 | 6, 2 | sstrd 3969 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| 8 | ssdif0 4341 | . . . . . . 7 ⊢ (𝐶 ⊆ 𝐴 ↔ (𝐶 ∖ 𝐴) = ∅) | |
| 9 | 7, 8 | sylib 218 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∖ 𝐴) = ∅) |
| 10 | dfss2 3944 | . . . . . . 7 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐶 ∩ 𝐵) = 𝐶) | |
| 11 | 6, 10 | sylib 218 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∩ 𝐵) = 𝐶) |
| 12 | 9, 11 | uneq12d 4144 | . . . . 5 ⊢ (𝜑 → ((𝐶 ∖ 𝐴) ∪ (𝐶 ∩ 𝐵)) = (∅ ∪ 𝐶)) |
| 13 | 0un 4371 | . . . . 5 ⊢ (∅ ∪ 𝐶) = 𝐶 | |
| 14 | 12, 13 | eqtrdi 2786 | . . . 4 ⊢ (𝜑 → ((𝐶 ∖ 𝐴) ∪ (𝐶 ∩ 𝐵)) = 𝐶) |
| 15 | 5, 14 | eqtrid 2782 | . . 3 ⊢ (𝜑 → (𝐶 ∖ (𝐴 ∖ 𝐵)) = 𝐶) |
| 16 | 4, 15 | difeq12d 4102 | . 2 ⊢ (𝜑 → (((𝐴 ∖ 𝐵) ∪ 𝐵) ∖ (𝐶 ∖ (𝐴 ∖ 𝐵))) = (𝐴 ∖ 𝐶)) |
| 17 | 1, 16 | eqtrid 2782 | 1 ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐶)) = (𝐴 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∖ cdif 3923 ∪ cun 3924 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 |
| This theorem is referenced by: psdmul 22104 |
| Copyright terms: Public domain | W3C validator |