![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psdmullem | Structured version Visualization version GIF version |
Description: Lemma for psdmul 22160. Transitive law for union of class difference. (Contributed by SN, 5-May-2025.) |
Ref | Expression |
---|---|
psdmullem.cb | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
psdmullem.ba | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
psdmullem | ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐶)) = (𝐴 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif3 4292 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐶)) = (((𝐴 ∖ 𝐵) ∪ 𝐵) ∖ (𝐶 ∖ (𝐴 ∖ 𝐵))) | |
2 | psdmullem.ba | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
3 | undifr 4487 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ ((𝐴 ∖ 𝐵) ∪ 𝐵) = 𝐴) | |
4 | 2, 3 | sylib 217 | . . 3 ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∪ 𝐵) = 𝐴) |
5 | difdif2 4288 | . . . 4 ⊢ (𝐶 ∖ (𝐴 ∖ 𝐵)) = ((𝐶 ∖ 𝐴) ∪ (𝐶 ∩ 𝐵)) | |
6 | psdmullem.cb | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
7 | 6, 2 | sstrd 3990 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
8 | ssdif0 4366 | . . . . . . 7 ⊢ (𝐶 ⊆ 𝐴 ↔ (𝐶 ∖ 𝐴) = ∅) | |
9 | 7, 8 | sylib 217 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∖ 𝐴) = ∅) |
10 | dfss2 3965 | . . . . . . 7 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐶 ∩ 𝐵) = 𝐶) | |
11 | 6, 10 | sylib 217 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∩ 𝐵) = 𝐶) |
12 | 9, 11 | uneq12d 4164 | . . . . 5 ⊢ (𝜑 → ((𝐶 ∖ 𝐴) ∪ (𝐶 ∩ 𝐵)) = (∅ ∪ 𝐶)) |
13 | 0un 4397 | . . . . 5 ⊢ (∅ ∪ 𝐶) = 𝐶 | |
14 | 12, 13 | eqtrdi 2782 | . . . 4 ⊢ (𝜑 → ((𝐶 ∖ 𝐴) ∪ (𝐶 ∩ 𝐵)) = 𝐶) |
15 | 5, 14 | eqtrid 2778 | . . 3 ⊢ (𝜑 → (𝐶 ∖ (𝐴 ∖ 𝐵)) = 𝐶) |
16 | 4, 15 | difeq12d 4122 | . 2 ⊢ (𝜑 → (((𝐴 ∖ 𝐵) ∪ 𝐵) ∖ (𝐶 ∖ (𝐴 ∖ 𝐵))) = (𝐴 ∖ 𝐶)) |
17 | 1, 16 | eqtrid 2778 | 1 ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐶)) = (𝐴 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 ⊆ wss 3947 ∅c0 4325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 |
This theorem is referenced by: psdmul 22160 |
Copyright terms: Public domain | W3C validator |