MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmullem Structured version   Visualization version   GIF version

Theorem psdmullem 22187
Description: Lemma for psdmul 22188. Transitive law for union of class difference. (Contributed by SN, 5-May-2025.)
Hypotheses
Ref Expression
psdmullem.cb (𝜑𝐶𝐵)
psdmullem.ba (𝜑𝐵𝐴)
Assertion
Ref Expression
psdmullem (𝜑 → ((𝐴𝐵) ∪ (𝐵𝐶)) = (𝐴𝐶))

Proof of Theorem psdmullem
StepHypRef Expression
1 undif3 4306 . 2 ((𝐴𝐵) ∪ (𝐵𝐶)) = (((𝐴𝐵) ∪ 𝐵) ∖ (𝐶 ∖ (𝐴𝐵)))
2 psdmullem.ba . . . 4 (𝜑𝐵𝐴)
3 undifr 4489 . . . 4 (𝐵𝐴 ↔ ((𝐴𝐵) ∪ 𝐵) = 𝐴)
42, 3sylib 218 . . 3 (𝜑 → ((𝐴𝐵) ∪ 𝐵) = 𝐴)
5 difdif2 4302 . . . 4 (𝐶 ∖ (𝐴𝐵)) = ((𝐶𝐴) ∪ (𝐶𝐵))
6 psdmullem.cb . . . . . . . 8 (𝜑𝐶𝐵)
76, 2sstrd 4006 . . . . . . 7 (𝜑𝐶𝐴)
8 ssdif0 4372 . . . . . . 7 (𝐶𝐴 ↔ (𝐶𝐴) = ∅)
97, 8sylib 218 . . . . . 6 (𝜑 → (𝐶𝐴) = ∅)
10 dfss2 3981 . . . . . . 7 (𝐶𝐵 ↔ (𝐶𝐵) = 𝐶)
116, 10sylib 218 . . . . . 6 (𝜑 → (𝐶𝐵) = 𝐶)
129, 11uneq12d 4179 . . . . 5 (𝜑 → ((𝐶𝐴) ∪ (𝐶𝐵)) = (∅ ∪ 𝐶))
13 0un 4402 . . . . 5 (∅ ∪ 𝐶) = 𝐶
1412, 13eqtrdi 2791 . . . 4 (𝜑 → ((𝐶𝐴) ∪ (𝐶𝐵)) = 𝐶)
155, 14eqtrid 2787 . . 3 (𝜑 → (𝐶 ∖ (𝐴𝐵)) = 𝐶)
164, 15difeq12d 4137 . 2 (𝜑 → (((𝐴𝐵) ∪ 𝐵) ∖ (𝐶 ∖ (𝐴𝐵))) = (𝐴𝐶))
171, 16eqtrid 2787 1 (𝜑 → ((𝐴𝐵) ∪ (𝐵𝐶)) = (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340
This theorem is referenced by:  psdmul  22188
  Copyright terms: Public domain W3C validator