MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmullem Structured version   Visualization version   GIF version

Theorem psdmullem 22081
Description: Lemma for psdmul 22082. Transitive law for union of class difference. (Contributed by SN, 5-May-2025.)
Hypotheses
Ref Expression
psdmullem.cb (𝜑𝐶𝐵)
psdmullem.ba (𝜑𝐵𝐴)
Assertion
Ref Expression
psdmullem (𝜑 → ((𝐴𝐵) ∪ (𝐵𝐶)) = (𝐴𝐶))

Proof of Theorem psdmullem
StepHypRef Expression
1 undif3 4250 . 2 ((𝐴𝐵) ∪ (𝐵𝐶)) = (((𝐴𝐵) ∪ 𝐵) ∖ (𝐶 ∖ (𝐴𝐵)))
2 psdmullem.ba . . . 4 (𝜑𝐵𝐴)
3 undifr 4433 . . . 4 (𝐵𝐴 ↔ ((𝐴𝐵) ∪ 𝐵) = 𝐴)
42, 3sylib 218 . . 3 (𝜑 → ((𝐴𝐵) ∪ 𝐵) = 𝐴)
5 difdif2 4246 . . . 4 (𝐶 ∖ (𝐴𝐵)) = ((𝐶𝐴) ∪ (𝐶𝐵))
6 psdmullem.cb . . . . . . . 8 (𝜑𝐶𝐵)
76, 2sstrd 3945 . . . . . . 7 (𝜑𝐶𝐴)
8 ssdif0 4316 . . . . . . 7 (𝐶𝐴 ↔ (𝐶𝐴) = ∅)
97, 8sylib 218 . . . . . 6 (𝜑 → (𝐶𝐴) = ∅)
10 dfss2 3920 . . . . . . 7 (𝐶𝐵 ↔ (𝐶𝐵) = 𝐶)
116, 10sylib 218 . . . . . 6 (𝜑 → (𝐶𝐵) = 𝐶)
129, 11uneq12d 4119 . . . . 5 (𝜑 → ((𝐶𝐴) ∪ (𝐶𝐵)) = (∅ ∪ 𝐶))
13 0un 4346 . . . . 5 (∅ ∪ 𝐶) = 𝐶
1412, 13eqtrdi 2782 . . . 4 (𝜑 → ((𝐶𝐴) ∪ (𝐶𝐵)) = 𝐶)
155, 14eqtrid 2778 . . 3 (𝜑 → (𝐶 ∖ (𝐴𝐵)) = 𝐶)
164, 15difeq12d 4077 . 2 (𝜑 → (((𝐴𝐵) ∪ 𝐵) ∖ (𝐶 ∖ (𝐴𝐵))) = (𝐴𝐶))
171, 16eqtrid 2778 1 (𝜑 → ((𝐴𝐵) ∪ (𝐵𝐶)) = (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cdif 3899  cun 3900  cin 3901  wss 3902  c0 4283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284
This theorem is referenced by:  psdmul  22082
  Copyright terms: Public domain W3C validator