![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psdmullem | Structured version Visualization version GIF version |
Description: Lemma for psdmul 22188. Transitive law for union of class difference. (Contributed by SN, 5-May-2025.) |
Ref | Expression |
---|---|
psdmullem.cb | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
psdmullem.ba | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
psdmullem | ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐶)) = (𝐴 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif3 4306 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐶)) = (((𝐴 ∖ 𝐵) ∪ 𝐵) ∖ (𝐶 ∖ (𝐴 ∖ 𝐵))) | |
2 | psdmullem.ba | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
3 | undifr 4489 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ ((𝐴 ∖ 𝐵) ∪ 𝐵) = 𝐴) | |
4 | 2, 3 | sylib 218 | . . 3 ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∪ 𝐵) = 𝐴) |
5 | difdif2 4302 | . . . 4 ⊢ (𝐶 ∖ (𝐴 ∖ 𝐵)) = ((𝐶 ∖ 𝐴) ∪ (𝐶 ∩ 𝐵)) | |
6 | psdmullem.cb | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
7 | 6, 2 | sstrd 4006 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
8 | ssdif0 4372 | . . . . . . 7 ⊢ (𝐶 ⊆ 𝐴 ↔ (𝐶 ∖ 𝐴) = ∅) | |
9 | 7, 8 | sylib 218 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∖ 𝐴) = ∅) |
10 | dfss2 3981 | . . . . . . 7 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐶 ∩ 𝐵) = 𝐶) | |
11 | 6, 10 | sylib 218 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∩ 𝐵) = 𝐶) |
12 | 9, 11 | uneq12d 4179 | . . . . 5 ⊢ (𝜑 → ((𝐶 ∖ 𝐴) ∪ (𝐶 ∩ 𝐵)) = (∅ ∪ 𝐶)) |
13 | 0un 4402 | . . . . 5 ⊢ (∅ ∪ 𝐶) = 𝐶 | |
14 | 12, 13 | eqtrdi 2791 | . . . 4 ⊢ (𝜑 → ((𝐶 ∖ 𝐴) ∪ (𝐶 ∩ 𝐵)) = 𝐶) |
15 | 5, 14 | eqtrid 2787 | . . 3 ⊢ (𝜑 → (𝐶 ∖ (𝐴 ∖ 𝐵)) = 𝐶) |
16 | 4, 15 | difeq12d 4137 | . 2 ⊢ (𝜑 → (((𝐴 ∖ 𝐵) ∪ 𝐵) ∖ (𝐶 ∖ (𝐴 ∖ 𝐵))) = (𝐴 ∖ 𝐶)) |
17 | 1, 16 | eqtrid 2787 | 1 ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐶)) = (𝐴 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∖ cdif 3960 ∪ cun 3961 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 |
This theorem is referenced by: psdmul 22188 |
Copyright terms: Public domain | W3C validator |