MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumlem3 Structured version   Visualization version   GIF version

Theorem lebnumlem3 24869
Description: Lemma for lebnum 24870. By the previous lemmas, 𝐹 is continuous and positive on a compact set, so it has a positive minimum 𝑟. Then setting 𝑑 = 𝑟 / ♯(𝑈), since for each 𝑢𝑈 we have ball(𝑥, 𝑑) ⊆ 𝑢 iff 𝑑𝑑(𝑥, 𝑋𝑢), if ¬ ball(𝑥, 𝑑) ⊆ 𝑢 for all 𝑢 then summing over 𝑢 yields Σ𝑢𝑈𝑑(𝑥, 𝑋𝑢) = 𝐹(𝑥) < Σ𝑢𝑈𝑑 = 𝑟, in contradiction to the assumption that 𝑟 is the minimum of 𝐹. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) (Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j 𝐽 = (MetOpen‘𝐷)
lebnum.d (𝜑𝐷 ∈ (Met‘𝑋))
lebnum.c (𝜑𝐽 ∈ Comp)
lebnum.s (𝜑𝑈𝐽)
lebnum.u (𝜑𝑋 = 𝑈)
lebnumlem1.u (𝜑𝑈 ∈ Fin)
lebnumlem1.n (𝜑 → ¬ 𝑋𝑈)
lebnumlem1.f 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
lebnumlem2.k 𝐾 = (topGen‘ran (,))
Assertion
Ref Expression
lebnumlem3 (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Distinct variable groups:   𝑘,𝑑,𝑢,𝑥,𝑦,𝑧,𝐷   𝐽,𝑑,𝑘,𝑥,𝑦,𝑧   𝑈,𝑑,𝑘,𝑢,𝑥,𝑦,𝑧   𝑥,𝐹   𝜑,𝑑,𝑘,𝑥,𝑦,𝑧   𝑋,𝑑,𝑘,𝑢,𝑥,𝑦,𝑧   𝑥,𝐾
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑦,𝑧,𝑢,𝑘,𝑑)   𝐽(𝑢)   𝐾(𝑦,𝑧,𝑢,𝑘,𝑑)

Proof of Theorem lebnumlem3
Dummy variables 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 12962 . . . 4 1 ∈ ℝ+
21ne0ii 4310 . . 3 + ≠ ∅
3 ral0 4479 . . . . 5 𝑥 ∈ ∅ ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢
4 simpr 484 . . . . . 6 ((𝜑𝑋 = ∅) → 𝑋 = ∅)
54raleqdv 3301 . . . . 5 ((𝜑𝑋 = ∅) → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥 ∈ ∅ ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
63, 5mpbiri 258 . . . 4 ((𝜑𝑋 = ∅) → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
76ralrimivw 3130 . . 3 ((𝜑𝑋 = ∅) → ∀𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
8 r19.2z 4461 . . 3 ((ℝ+ ≠ ∅ ∧ ∀𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
92, 7, 8sylancr 587 . 2 ((𝜑𝑋 = ∅) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
10 lebnum.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
11 lebnum.d . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
12 lebnum.c . . . . . . 7 (𝜑𝐽 ∈ Comp)
13 lebnum.s . . . . . . 7 (𝜑𝑈𝐽)
14 lebnum.u . . . . . . 7 (𝜑𝑋 = 𝑈)
15 lebnumlem1.u . . . . . . 7 (𝜑𝑈 ∈ Fin)
16 lebnumlem1.n . . . . . . 7 (𝜑 → ¬ 𝑋𝑈)
17 lebnumlem1.f . . . . . . 7 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
1810, 11, 12, 13, 14, 15, 16, 17lebnumlem1 24867 . . . . . 6 (𝜑𝐹:𝑋⟶ℝ+)
1918adantr 480 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝐹:𝑋⟶ℝ+)
2019frnd 6699 . . . 4 ((𝜑𝑋 ≠ ∅) → ran 𝐹 ⊆ ℝ+)
21 eqid 2730 . . . . . . 7 𝐽 = 𝐽
22 lebnumlem2.k . . . . . . 7 𝐾 = (topGen‘ran (,))
2312adantr 480 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝐽 ∈ Comp)
2410, 11, 12, 13, 14, 15, 16, 17, 22lebnumlem2 24868 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2524adantr 480 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾))
26 metxmet 24229 . . . . . . . . . 10 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2710mopnuni 24336 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
2811, 26, 273syl 18 . . . . . . . . 9 (𝜑𝑋 = 𝐽)
2928neeq1d 2985 . . . . . . . 8 (𝜑 → (𝑋 ≠ ∅ ↔ 𝐽 ≠ ∅))
3029biimpa 476 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝐽 ≠ ∅)
3121, 22, 23, 25, 30evth2 24866 . . . . . 6 ((𝜑𝑋 ≠ ∅) → ∃𝑤 𝐽𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥))
3228adantr 480 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝑋 = 𝐽)
33 raleq 3298 . . . . . . . 8 (𝑋 = 𝐽 → (∀𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥) ↔ ∀𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥)))
3433rexeqbi1dv 3314 . . . . . . 7 (𝑋 = 𝐽 → (∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥) ↔ ∃𝑤 𝐽𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥)))
3532, 34syl 17 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥) ↔ ∃𝑤 𝐽𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥)))
3631, 35mpbird 257 . . . . 5 ((𝜑𝑋 ≠ ∅) → ∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥))
37 ffn 6691 . . . . . 6 (𝐹:𝑋⟶ℝ+𝐹 Fn 𝑋)
38 breq1 5113 . . . . . . . 8 (𝑟 = (𝐹𝑤) → (𝑟 ≤ (𝐹𝑥) ↔ (𝐹𝑤) ≤ (𝐹𝑥)))
3938ralbidv 3157 . . . . . . 7 (𝑟 = (𝐹𝑤) → (∀𝑥𝑋 𝑟 ≤ (𝐹𝑥) ↔ ∀𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥)))
4039rexrn 7062 . . . . . 6 (𝐹 Fn 𝑋 → (∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥) ↔ ∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥)))
4119, 37, 403syl 18 . . . . 5 ((𝜑𝑋 ≠ ∅) → (∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥) ↔ ∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥)))
4236, 41mpbird 257 . . . 4 ((𝜑𝑋 ≠ ∅) → ∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥))
43 ssrexv 4019 . . . 4 (ran 𝐹 ⊆ ℝ+ → (∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∃𝑟 ∈ ℝ+𝑥𝑋 𝑟 ≤ (𝐹𝑥)))
4420, 42, 43sylc 65 . . 3 ((𝜑𝑋 ≠ ∅) → ∃𝑟 ∈ ℝ+𝑥𝑋 𝑟 ≤ (𝐹𝑥))
45 simpr 484 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
4614ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑋 = 𝑈)
47 simplr 768 . . . . . . . . . 10 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑋 ≠ ∅)
4846, 47eqnetrrd 2994 . . . . . . . . 9 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑈 ≠ ∅)
49 unieq 4885 . . . . . . . . . . 11 (𝑈 = ∅ → 𝑈 = ∅)
50 uni0 4902 . . . . . . . . . . 11 ∅ = ∅
5149, 50eqtrdi 2781 . . . . . . . . . 10 (𝑈 = ∅ → 𝑈 = ∅)
5251necon3i 2958 . . . . . . . . 9 ( 𝑈 ≠ ∅ → 𝑈 ≠ ∅)
5348, 52syl 17 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑈 ≠ ∅)
5415ad2antrr 726 . . . . . . . . 9 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑈 ∈ Fin)
55 hashnncl 14338 . . . . . . . . 9 (𝑈 ∈ Fin → ((♯‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
5654, 55syl 17 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → ((♯‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
5753, 56mpbird 257 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (♯‘𝑈) ∈ ℕ)
5857nnrpd 13000 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (♯‘𝑈) ∈ ℝ+)
5945, 58rpdivcld 13019 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (𝑟 / (♯‘𝑈)) ∈ ℝ+)
60 ralnex 3056 . . . . . . . 8 (∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 ↔ ¬ ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)
6154adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑈 ∈ Fin)
6253adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑈 ≠ ∅)
63 simprl 770 . . . . . . . . . . . . . . 15 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑥𝑋)
6463adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑥𝑋)
65 eqid 2730 . . . . . . . . . . . . . . 15 (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
6665metdsval 24743 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) = inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
6764, 66syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) = inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
6811ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
6968ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝐷 ∈ (Met‘𝑋))
70 difssd 4103 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑋𝑘) ⊆ 𝑋)
71 elssuni 4904 . . . . . . . . . . . . . . . . . 18 (𝑘𝑈𝑘 𝑈)
7271adantl 481 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑘 𝑈)
7346ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑋 = 𝑈)
7472, 73sseqtrrd 3987 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑘𝑋)
75 eleq1 2817 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑋 → (𝑘𝑈𝑋𝑈))
7675notbid 318 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑋 → (¬ 𝑘𝑈 ↔ ¬ 𝑋𝑈))
7716, 76syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑘 = 𝑋 → ¬ 𝑘𝑈))
7877necon2ad 2941 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑘𝑈𝑘𝑋))
7978ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝑘𝑈𝑘𝑋))
8079imp 406 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑘𝑋)
81 pssdifn0 4334 . . . . . . . . . . . . . . . 16 ((𝑘𝑋𝑘𝑋) → (𝑋𝑘) ≠ ∅)
8274, 80, 81syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑋𝑘) ≠ ∅)
8365metdsre 24749 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋 ∧ (𝑋𝑘) ≠ ∅) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
8469, 70, 82, 83syl3anc 1373 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
8584, 64ffvelcdmd 7060 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) ∈ ℝ)
8667, 85eqeltrrd 2830 . . . . . . . . . . . 12 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) ∈ ℝ)
8759ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑟 / (♯‘𝑈)) ∈ ℝ+)
8887rpred 13002 . . . . . . . . . . . 12 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑟 / (♯‘𝑈)) ∈ ℝ)
89 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)
90 sseq2 3976 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑘 → ((𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
9190notbid 318 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑘 → (¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 ↔ ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
9291rspccva 3590 . . . . . . . . . . . . . . . 16 ((∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢𝑘𝑈) → ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘)
9389, 92sylan 580 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘)
9469, 26syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝐷 ∈ (∞Met‘𝑋))
9587rpxrd 13003 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑟 / (♯‘𝑈)) ∈ ℝ*)
9665metdsge 24745 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋𝑥𝑋) ∧ (𝑟 / (♯‘𝑈)) ∈ ℝ*) → ((𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) ↔ ((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈)))) = ∅))
9794, 70, 64, 95, 96syl31anc 1375 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) ↔ ((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈)))) = ∅))
98 blssm 24313 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / (♯‘𝑈)) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑋)
9994, 64, 95, 98syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑋)
100 difin0ss 4339 . . . . . . . . . . . . . . . . 17 (((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈)))) = ∅ → ((𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑋 → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
10199, 100syl5com 31 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈)))) = ∅ → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
10297, 101sylbid 240 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
10393, 102mtod 198 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ¬ (𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥))
10485, 88ltnled 11328 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) < (𝑟 / (♯‘𝑈)) ↔ ¬ (𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥)))
105103, 104mpbird 257 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) < (𝑟 / (♯‘𝑈)))
10667, 105eqbrtrrd 5134 . . . . . . . . . . . 12 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) < (𝑟 / (♯‘𝑈)))
10761, 62, 86, 88, 106fsumlt 15773 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) < Σ𝑘𝑈 (𝑟 / (♯‘𝑈)))
108 oveq1 7397 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑦𝐷𝑧) = (𝑥𝐷𝑧))
109108mpteq2dv 5204 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)))
110109rneqd 5905 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)))
111110infeq1d 9436 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) = inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
112111sumeq2sdv 15676 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) = Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
113 sumex 15661 . . . . . . . . . . . . 13 Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) ∈ V
114112, 17, 113fvmpt 6971 . . . . . . . . . . . 12 (𝑥𝑋 → (𝐹𝑥) = Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
11563, 114syl 17 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) = Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
11659adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝑟 / (♯‘𝑈)) ∈ ℝ+)
117116rpcnd 13004 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝑟 / (♯‘𝑈)) ∈ ℂ)
118 fsumconst 15763 . . . . . . . . . . . . 13 ((𝑈 ∈ Fin ∧ (𝑟 / (♯‘𝑈)) ∈ ℂ) → Σ𝑘𝑈 (𝑟 / (♯‘𝑈)) = ((♯‘𝑈) · (𝑟 / (♯‘𝑈))))
11961, 117, 118syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → Σ𝑘𝑈 (𝑟 / (♯‘𝑈)) = ((♯‘𝑈) · (𝑟 / (♯‘𝑈))))
120 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑟 ∈ ℝ+)
121120rpcnd 13004 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑟 ∈ ℂ)
12257adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (♯‘𝑈) ∈ ℕ)
123122nncnd 12209 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (♯‘𝑈) ∈ ℂ)
124122nnne0d 12243 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (♯‘𝑈) ≠ 0)
125121, 123, 124divcan2d 11967 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → ((♯‘𝑈) · (𝑟 / (♯‘𝑈))) = 𝑟)
126119, 125eqtr2d 2766 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑟 = Σ𝑘𝑈 (𝑟 / (♯‘𝑈)))
127107, 115, 1263brtr4d 5142 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) < 𝑟)
12819ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝐹:𝑋⟶ℝ+)
129128, 63ffvelcdmd 7060 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) ∈ ℝ+)
130129rpred 13002 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) ∈ ℝ)
131120rpred 13002 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑟 ∈ ℝ)
132130, 131ltnled 11328 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → ((𝐹𝑥) < 𝑟 ↔ ¬ 𝑟 ≤ (𝐹𝑥)))
133127, 132mpbid 232 . . . . . . . . 9 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → ¬ 𝑟 ≤ (𝐹𝑥))
134133expr 456 . . . . . . . 8 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 → ¬ 𝑟 ≤ (𝐹𝑥)))
13560, 134biimtrrid 243 . . . . . . 7 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (¬ ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 → ¬ 𝑟 ≤ (𝐹𝑥)))
136135con4d 115 . . . . . 6 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑟 ≤ (𝐹𝑥) → ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
137136ralimdva 3146 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (∀𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
138 oveq2 7398 . . . . . . . . 9 (𝑑 = (𝑟 / (♯‘𝑈)) → (𝑥(ball‘𝐷)𝑑) = (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))))
139138sseq1d 3981 . . . . . . . 8 (𝑑 = (𝑟 / (♯‘𝑈)) → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
140139rexbidv 3158 . . . . . . 7 (𝑑 = (𝑟 / (♯‘𝑈)) → (∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
141140ralbidv 3157 . . . . . 6 (𝑑 = (𝑟 / (♯‘𝑈)) → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
142141rspcev 3591 . . . . 5 (((𝑟 / (♯‘𝑈)) ∈ ℝ+ ∧ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
14359, 137, 142syl6an 684 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (∀𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
144143rexlimdva 3135 . . 3 ((𝜑𝑋 ≠ ∅) → (∃𝑟 ∈ ℝ+𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
14544, 144mpd 15 . 2 ((𝜑𝑋 ≠ ∅) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
1469, 145pm2.61dane 3013 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  cin 3916  wss 3917  c0 4299   cuni 4874   class class class wbr 5110  cmpt 5191  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  infcinf 9399  cc 11073  cr 11074  1c1 11076   · cmul 11080  *cxr 11214   < clt 11215  cle 11216   / cdiv 11842  cn 12193  +crp 12958  (,)cioo 13313  chash 14302  Σcsu 15659  topGenctg 17407  ∞Metcxmet 21256  Metcmet 21257  ballcbl 21258  MetOpencmopn 21261   Cn ccn 23118  Compccmp 23280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-ec 8676  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-cn 23121  df-cnp 23122  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-xms 24215  df-ms 24216  df-tms 24217
This theorem is referenced by:  lebnum  24870
  Copyright terms: Public domain W3C validator