MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumlem3 Structured version   Visualization version   GIF version

Theorem lebnumlem3 23260
Description: Lemma for lebnum 23261. By the previous lemmas, 𝐹 is continuous and positive on a compact set, so it has a positive minimum 𝑟. Then setting 𝑑 = 𝑟 / ♯(𝑈), since for each 𝑢𝑈 we have ball(𝑥, 𝑑) ⊆ 𝑢 iff 𝑑𝑑(𝑥, 𝑋𝑢), if ¬ ball(𝑥, 𝑑) ⊆ 𝑢 for all 𝑢 then summing over 𝑢 yields Σ𝑢𝑈𝑑(𝑥, 𝑋𝑢) = 𝐹(𝑥) < Σ𝑢𝑈𝑑 = 𝑟, in contradiction to the assumption that 𝑟 is the minimum of 𝐹. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) (Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j 𝐽 = (MetOpen‘𝐷)
lebnum.d (𝜑𝐷 ∈ (Met‘𝑋))
lebnum.c (𝜑𝐽 ∈ Comp)
lebnum.s (𝜑𝑈𝐽)
lebnum.u (𝜑𝑋 = 𝑈)
lebnumlem1.u (𝜑𝑈 ∈ Fin)
lebnumlem1.n (𝜑 → ¬ 𝑋𝑈)
lebnumlem1.f 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
lebnumlem2.k 𝐾 = (topGen‘ran (,))
Assertion
Ref Expression
lebnumlem3 (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Distinct variable groups:   𝑘,𝑑,𝑢,𝑥,𝑦,𝑧,𝐷   𝐽,𝑑,𝑘,𝑥,𝑦,𝑧   𝑈,𝑑,𝑘,𝑢,𝑥,𝑦,𝑧   𝑥,𝐹   𝜑,𝑑,𝑘,𝑥,𝑦,𝑧   𝑋,𝑑,𝑘,𝑢,𝑥,𝑦,𝑧   𝑥,𝐾
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑦,𝑧,𝑢,𝑘,𝑑)   𝐽(𝑢)   𝐾(𝑦,𝑧,𝑢,𝑘,𝑑)

Proof of Theorem lebnumlem3
Dummy variables 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 12201 . . . 4 1 ∈ ℝ+
21ne0ii 4184 . . 3 + ≠ ∅
3 ral0 4333 . . . . 5 𝑥 ∈ ∅ ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢
4 simpr 477 . . . . . 6 ((𝜑𝑋 = ∅) → 𝑋 = ∅)
54raleqdv 3349 . . . . 5 ((𝜑𝑋 = ∅) → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥 ∈ ∅ ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
63, 5mpbiri 250 . . . 4 ((𝜑𝑋 = ∅) → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
76ralrimivw 3127 . . 3 ((𝜑𝑋 = ∅) → ∀𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
8 r19.2z 4317 . . 3 ((ℝ+ ≠ ∅ ∧ ∀𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
92, 7, 8sylancr 578 . 2 ((𝜑𝑋 = ∅) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
10 lebnum.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
11 lebnum.d . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
12 lebnum.c . . . . . . 7 (𝜑𝐽 ∈ Comp)
13 lebnum.s . . . . . . 7 (𝜑𝑈𝐽)
14 lebnum.u . . . . . . 7 (𝜑𝑋 = 𝑈)
15 lebnumlem1.u . . . . . . 7 (𝜑𝑈 ∈ Fin)
16 lebnumlem1.n . . . . . . 7 (𝜑 → ¬ 𝑋𝑈)
17 lebnumlem1.f . . . . . . 7 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
1810, 11, 12, 13, 14, 15, 16, 17lebnumlem1 23258 . . . . . 6 (𝜑𝐹:𝑋⟶ℝ+)
1918adantr 473 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝐹:𝑋⟶ℝ+)
2019frnd 6345 . . . 4 ((𝜑𝑋 ≠ ∅) → ran 𝐹 ⊆ ℝ+)
21 eqid 2772 . . . . . . 7 𝐽 = 𝐽
22 lebnumlem2.k . . . . . . 7 𝐾 = (topGen‘ran (,))
2312adantr 473 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝐽 ∈ Comp)
2410, 11, 12, 13, 14, 15, 16, 17, 22lebnumlem2 23259 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2524adantr 473 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾))
26 metxmet 22637 . . . . . . . . . 10 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2710mopnuni 22744 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
2811, 26, 273syl 18 . . . . . . . . 9 (𝜑𝑋 = 𝐽)
2928neeq1d 3020 . . . . . . . 8 (𝜑 → (𝑋 ≠ ∅ ↔ 𝐽 ≠ ∅))
3029biimpa 469 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝐽 ≠ ∅)
3121, 22, 23, 25, 30evth2 23257 . . . . . 6 ((𝜑𝑋 ≠ ∅) → ∃𝑤 𝐽𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥))
3228adantr 473 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝑋 = 𝐽)
33 raleq 3339 . . . . . . . 8 (𝑋 = 𝐽 → (∀𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥) ↔ ∀𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥)))
3433rexeqbi1dv 3338 . . . . . . 7 (𝑋 = 𝐽 → (∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥) ↔ ∃𝑤 𝐽𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥)))
3532, 34syl 17 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥) ↔ ∃𝑤 𝐽𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥)))
3631, 35mpbird 249 . . . . 5 ((𝜑𝑋 ≠ ∅) → ∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥))
37 ffn 6338 . . . . . 6 (𝐹:𝑋⟶ℝ+𝐹 Fn 𝑋)
38 breq1 4926 . . . . . . . 8 (𝑟 = (𝐹𝑤) → (𝑟 ≤ (𝐹𝑥) ↔ (𝐹𝑤) ≤ (𝐹𝑥)))
3938ralbidv 3141 . . . . . . 7 (𝑟 = (𝐹𝑤) → (∀𝑥𝑋 𝑟 ≤ (𝐹𝑥) ↔ ∀𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥)))
4039rexrn 6672 . . . . . 6 (𝐹 Fn 𝑋 → (∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥) ↔ ∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥)))
4119, 37, 403syl 18 . . . . 5 ((𝜑𝑋 ≠ ∅) → (∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥) ↔ ∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥)))
4236, 41mpbird 249 . . . 4 ((𝜑𝑋 ≠ ∅) → ∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥))
43 ssrexv 3920 . . . 4 (ran 𝐹 ⊆ ℝ+ → (∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∃𝑟 ∈ ℝ+𝑥𝑋 𝑟 ≤ (𝐹𝑥)))
4420, 42, 43sylc 65 . . 3 ((𝜑𝑋 ≠ ∅) → ∃𝑟 ∈ ℝ+𝑥𝑋 𝑟 ≤ (𝐹𝑥))
45 simpr 477 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
4614ad2antrr 713 . . . . . . . . . 10 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑋 = 𝑈)
47 simplr 756 . . . . . . . . . 10 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑋 ≠ ∅)
4846, 47eqnetrrd 3029 . . . . . . . . 9 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑈 ≠ ∅)
49 unieq 4714 . . . . . . . . . . 11 (𝑈 = ∅ → 𝑈 = ∅)
50 uni0 4733 . . . . . . . . . . 11 ∅ = ∅
5149, 50syl6eq 2824 . . . . . . . . . 10 (𝑈 = ∅ → 𝑈 = ∅)
5251necon3i 2993 . . . . . . . . 9 ( 𝑈 ≠ ∅ → 𝑈 ≠ ∅)
5348, 52syl 17 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑈 ≠ ∅)
5415ad2antrr 713 . . . . . . . . 9 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑈 ∈ Fin)
55 hashnncl 13535 . . . . . . . . 9 (𝑈 ∈ Fin → ((♯‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
5654, 55syl 17 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → ((♯‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
5753, 56mpbird 249 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (♯‘𝑈) ∈ ℕ)
5857nnrpd 12239 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (♯‘𝑈) ∈ ℝ+)
5945, 58rpdivcld 12258 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (𝑟 / (♯‘𝑈)) ∈ ℝ+)
60 ralnex 3177 . . . . . . . 8 (∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 ↔ ¬ ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)
6154adantr 473 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑈 ∈ Fin)
6253adantr 473 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑈 ≠ ∅)
63 simprl 758 . . . . . . . . . . . . . . 15 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑥𝑋)
6463adantr 473 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑥𝑋)
65 eqid 2772 . . . . . . . . . . . . . . 15 (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
6665metdsval 23148 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) = inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
6764, 66syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) = inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
6811ad2antrr 713 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
6968ad2antrr 713 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝐷 ∈ (Met‘𝑋))
70 difssd 3995 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑋𝑘) ⊆ 𝑋)
71 elssuni 4735 . . . . . . . . . . . . . . . . . 18 (𝑘𝑈𝑘 𝑈)
7271adantl 474 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑘 𝑈)
7346ad2antrr 713 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑋 = 𝑈)
7472, 73sseqtr4d 3894 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑘𝑋)
75 eleq1 2847 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑋 → (𝑘𝑈𝑋𝑈))
7675notbid 310 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑋 → (¬ 𝑘𝑈 ↔ ¬ 𝑋𝑈))
7716, 76syl5ibrcom 239 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑘 = 𝑋 → ¬ 𝑘𝑈))
7877necon2ad 2976 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑘𝑈𝑘𝑋))
7978ad3antrrr 717 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝑘𝑈𝑘𝑋))
8079imp 398 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑘𝑋)
81 pssdifn0 4206 . . . . . . . . . . . . . . . 16 ((𝑘𝑋𝑘𝑋) → (𝑋𝑘) ≠ ∅)
8274, 80, 81syl2anc 576 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑋𝑘) ≠ ∅)
8365metdsre 23154 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋 ∧ (𝑋𝑘) ≠ ∅) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
8469, 70, 82, 83syl3anc 1351 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
8584, 64ffvelrnd 6671 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) ∈ ℝ)
8667, 85eqeltrrd 2861 . . . . . . . . . . . 12 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) ∈ ℝ)
8759ad2antrr 713 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑟 / (♯‘𝑈)) ∈ ℝ+)
8887rpred 12241 . . . . . . . . . . . 12 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑟 / (♯‘𝑈)) ∈ ℝ)
89 simprr 760 . . . . . . . . . . . . . . . 16 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)
90 sseq2 3879 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑘 → ((𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
9190notbid 310 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑘 → (¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 ↔ ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
9291rspccva 3528 . . . . . . . . . . . . . . . 16 ((∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢𝑘𝑈) → ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘)
9389, 92sylan 572 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘)
9469, 26syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝐷 ∈ (∞Met‘𝑋))
9587rpxrd 12242 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑟 / (♯‘𝑈)) ∈ ℝ*)
9665metdsge 23150 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋𝑥𝑋) ∧ (𝑟 / (♯‘𝑈)) ∈ ℝ*) → ((𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) ↔ ((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈)))) = ∅))
9794, 70, 64, 95, 96syl31anc 1353 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) ↔ ((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈)))) = ∅))
98 blssm 22721 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / (♯‘𝑈)) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑋)
9994, 64, 95, 98syl3anc 1351 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑋)
100 difin0ss 4209 . . . . . . . . . . . . . . . . 17 (((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈)))) = ∅ → ((𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑋 → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
10199, 100syl5com 31 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈)))) = ∅ → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
10297, 101sylbid 232 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
10393, 102mtod 190 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ¬ (𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥))
10485, 88ltnled 10579 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) < (𝑟 / (♯‘𝑈)) ↔ ¬ (𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥)))
105103, 104mpbird 249 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) < (𝑟 / (♯‘𝑈)))
10667, 105eqbrtrrd 4947 . . . . . . . . . . . 12 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) < (𝑟 / (♯‘𝑈)))
10761, 62, 86, 88, 106fsumlt 15005 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) < Σ𝑘𝑈 (𝑟 / (♯‘𝑈)))
108 oveq1 6977 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑦𝐷𝑧) = (𝑥𝐷𝑧))
109108mpteq2dv 5017 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)))
110109rneqd 5644 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)))
111110infeq1d 8728 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) = inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
112111sumeq2sdv 14911 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) = Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
113 sumex 14895 . . . . . . . . . . . . 13 Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) ∈ V
114112, 17, 113fvmpt 6589 . . . . . . . . . . . 12 (𝑥𝑋 → (𝐹𝑥) = Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
11563, 114syl 17 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) = Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
11659adantr 473 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝑟 / (♯‘𝑈)) ∈ ℝ+)
117116rpcnd 12243 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝑟 / (♯‘𝑈)) ∈ ℂ)
118 fsumconst 14995 . . . . . . . . . . . . 13 ((𝑈 ∈ Fin ∧ (𝑟 / (♯‘𝑈)) ∈ ℂ) → Σ𝑘𝑈 (𝑟 / (♯‘𝑈)) = ((♯‘𝑈) · (𝑟 / (♯‘𝑈))))
11961, 117, 118syl2anc 576 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → Σ𝑘𝑈 (𝑟 / (♯‘𝑈)) = ((♯‘𝑈) · (𝑟 / (♯‘𝑈))))
120 simplr 756 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑟 ∈ ℝ+)
121120rpcnd 12243 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑟 ∈ ℂ)
12257adantr 473 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (♯‘𝑈) ∈ ℕ)
123122nncnd 11449 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (♯‘𝑈) ∈ ℂ)
124122nnne0d 11483 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (♯‘𝑈) ≠ 0)
125121, 123, 124divcan2d 11211 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → ((♯‘𝑈) · (𝑟 / (♯‘𝑈))) = 𝑟)
126119, 125eqtr2d 2809 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑟 = Σ𝑘𝑈 (𝑟 / (♯‘𝑈)))
127107, 115, 1263brtr4d 4955 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) < 𝑟)
12819ad2antrr 713 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝐹:𝑋⟶ℝ+)
129128, 63ffvelrnd 6671 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) ∈ ℝ+)
130129rpred 12241 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) ∈ ℝ)
131120rpred 12241 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑟 ∈ ℝ)
132130, 131ltnled 10579 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → ((𝐹𝑥) < 𝑟 ↔ ¬ 𝑟 ≤ (𝐹𝑥)))
133127, 132mpbid 224 . . . . . . . . 9 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → ¬ 𝑟 ≤ (𝐹𝑥))
134133expr 449 . . . . . . . 8 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 → ¬ 𝑟 ≤ (𝐹𝑥)))
13560, 134syl5bir 235 . . . . . . 7 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (¬ ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 → ¬ 𝑟 ≤ (𝐹𝑥)))
136135con4d 115 . . . . . 6 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑟 ≤ (𝐹𝑥) → ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
137136ralimdva 3121 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (∀𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
138 oveq2 6978 . . . . . . . . 9 (𝑑 = (𝑟 / (♯‘𝑈)) → (𝑥(ball‘𝐷)𝑑) = (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))))
139138sseq1d 3884 . . . . . . . 8 (𝑑 = (𝑟 / (♯‘𝑈)) → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
140139rexbidv 3236 . . . . . . 7 (𝑑 = (𝑟 / (♯‘𝑈)) → (∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
141140ralbidv 3141 . . . . . 6 (𝑑 = (𝑟 / (♯‘𝑈)) → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
142141rspcev 3529 . . . . 5 (((𝑟 / (♯‘𝑈)) ∈ ℝ+ ∧ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
14359, 137, 142syl6an 671 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (∀𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
144143rexlimdva 3223 . . 3 ((𝜑𝑋 ≠ ∅) → (∃𝑟 ∈ ℝ+𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
14544, 144mpd 15 . 2 ((𝜑𝑋 ≠ ∅) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
1469, 145pm2.61dane 3049 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1507  wcel 2048  wne 2961  wral 3082  wrex 3083  cdif 3822  cin 3824  wss 3825  c0 4173   cuni 4706   class class class wbr 4923  cmpt 5002  ran crn 5401   Fn wfn 6177  wf 6178  cfv 6182  (class class class)co 6970  Fincfn 8298  infcinf 8692  cc 10325  cr 10326  1c1 10328   · cmul 10332  *cxr 10465   < clt 10466  cle 10467   / cdiv 11090  cn 11431  +crp 12197  (,)cioo 12547  chash 13498  Σcsu 14893  topGenctg 16557  ∞Metcxmet 20222  Metcmet 20223  ballcbl 20224  MetOpencmopn 20227   Cn ccn 21526  Compccmp 21688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405  ax-addf 10406  ax-mulf 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-om 7391  df-1st 7494  df-2nd 7495  df-supp 7627  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-er 8081  df-ec 8083  df-map 8200  df-ixp 8252  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fsupp 8621  df-fi 8662  df-sup 8693  df-inf 8694  df-oi 8761  df-card 9154  df-cda 9380  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-z 11787  df-dec 11905  df-uz 12052  df-q 12156  df-rp 12198  df-xneg 12317  df-xadd 12318  df-xmul 12319  df-ioo 12551  df-ico 12553  df-icc 12554  df-fz 12702  df-fzo 12843  df-seq 13178  df-exp 13238  df-hash 13499  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-clim 14696  df-sum 14894  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-starv 16426  df-sca 16427  df-vsca 16428  df-ip 16429  df-tset 16430  df-ple 16431  df-ds 16433  df-unif 16434  df-hom 16435  df-cco 16436  df-rest 16542  df-topn 16543  df-0g 16561  df-gsum 16562  df-topgen 16563  df-pt 16564  df-prds 16567  df-xrs 16621  df-qtop 16626  df-imas 16627  df-xps 16629  df-mre 16705  df-mrc 16706  df-acs 16708  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-submnd 17794  df-mulg 18002  df-cntz 18208  df-cmn 18658  df-psmet 20229  df-xmet 20230  df-met 20231  df-bl 20232  df-mopn 20233  df-cnfld 20238  df-top 21196  df-topon 21213  df-topsp 21235  df-bases 21248  df-cld 21321  df-ntr 21322  df-cls 21323  df-cn 21529  df-cnp 21530  df-cmp 21689  df-tx 21864  df-hmeo 22057  df-xms 22623  df-ms 22624  df-tms 22625
This theorem is referenced by:  lebnum  23261
  Copyright terms: Public domain W3C validator