MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumlem3 Structured version   Visualization version   GIF version

Theorem lebnumlem3 24895
Description: Lemma for lebnum 24896. By the previous lemmas, 𝐹 is continuous and positive on a compact set, so it has a positive minimum 𝑟. Then setting 𝑑 = 𝑟 / ♯(𝑈), since for each 𝑢𝑈 we have ball(𝑥, 𝑑) ⊆ 𝑢 iff 𝑑𝑑(𝑥, 𝑋𝑢), if ¬ ball(𝑥, 𝑑) ⊆ 𝑢 for all 𝑢 then summing over 𝑢 yields Σ𝑢𝑈𝑑(𝑥, 𝑋𝑢) = 𝐹(𝑥) < Σ𝑢𝑈𝑑 = 𝑟, in contradiction to the assumption that 𝑟 is the minimum of 𝐹. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) (Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j 𝐽 = (MetOpen‘𝐷)
lebnum.d (𝜑𝐷 ∈ (Met‘𝑋))
lebnum.c (𝜑𝐽 ∈ Comp)
lebnum.s (𝜑𝑈𝐽)
lebnum.u (𝜑𝑋 = 𝑈)
lebnumlem1.u (𝜑𝑈 ∈ Fin)
lebnumlem1.n (𝜑 → ¬ 𝑋𝑈)
lebnumlem1.f 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
lebnumlem2.k 𝐾 = (topGen‘ran (,))
Assertion
Ref Expression
lebnumlem3 (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Distinct variable groups:   𝑘,𝑑,𝑢,𝑥,𝑦,𝑧,𝐷   𝐽,𝑑,𝑘,𝑥,𝑦,𝑧   𝑈,𝑑,𝑘,𝑢,𝑥,𝑦,𝑧   𝑥,𝐹   𝜑,𝑑,𝑘,𝑥,𝑦,𝑧   𝑋,𝑑,𝑘,𝑢,𝑥,𝑦,𝑧   𝑥,𝐾
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑦,𝑧,𝑢,𝑘,𝑑)   𝐽(𝑢)   𝐾(𝑦,𝑧,𝑢,𝑘,𝑑)

Proof of Theorem lebnumlem3
Dummy variables 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 12931 . . . 4 1 ∈ ℝ+
21ne0ii 4303 . . 3 + ≠ ∅
3 ral0 4472 . . . . 5 𝑥 ∈ ∅ ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢
4 simpr 484 . . . . . 6 ((𝜑𝑋 = ∅) → 𝑋 = ∅)
54raleqdv 3296 . . . . 5 ((𝜑𝑋 = ∅) → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥 ∈ ∅ ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
63, 5mpbiri 258 . . . 4 ((𝜑𝑋 = ∅) → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
76ralrimivw 3129 . . 3 ((𝜑𝑋 = ∅) → ∀𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
8 r19.2z 4454 . . 3 ((ℝ+ ≠ ∅ ∧ ∀𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
92, 7, 8sylancr 587 . 2 ((𝜑𝑋 = ∅) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
10 lebnum.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
11 lebnum.d . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
12 lebnum.c . . . . . . 7 (𝜑𝐽 ∈ Comp)
13 lebnum.s . . . . . . 7 (𝜑𝑈𝐽)
14 lebnum.u . . . . . . 7 (𝜑𝑋 = 𝑈)
15 lebnumlem1.u . . . . . . 7 (𝜑𝑈 ∈ Fin)
16 lebnumlem1.n . . . . . . 7 (𝜑 → ¬ 𝑋𝑈)
17 lebnumlem1.f . . . . . . 7 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
1810, 11, 12, 13, 14, 15, 16, 17lebnumlem1 24893 . . . . . 6 (𝜑𝐹:𝑋⟶ℝ+)
1918adantr 480 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝐹:𝑋⟶ℝ+)
2019frnd 6678 . . . 4 ((𝜑𝑋 ≠ ∅) → ran 𝐹 ⊆ ℝ+)
21 eqid 2729 . . . . . . 7 𝐽 = 𝐽
22 lebnumlem2.k . . . . . . 7 𝐾 = (topGen‘ran (,))
2312adantr 480 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝐽 ∈ Comp)
2410, 11, 12, 13, 14, 15, 16, 17, 22lebnumlem2 24894 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2524adantr 480 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾))
26 metxmet 24255 . . . . . . . . . 10 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2710mopnuni 24362 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
2811, 26, 273syl 18 . . . . . . . . 9 (𝜑𝑋 = 𝐽)
2928neeq1d 2984 . . . . . . . 8 (𝜑 → (𝑋 ≠ ∅ ↔ 𝐽 ≠ ∅))
3029biimpa 476 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝐽 ≠ ∅)
3121, 22, 23, 25, 30evth2 24892 . . . . . 6 ((𝜑𝑋 ≠ ∅) → ∃𝑤 𝐽𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥))
3228adantr 480 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝑋 = 𝐽)
33 raleq 3293 . . . . . . . 8 (𝑋 = 𝐽 → (∀𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥) ↔ ∀𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥)))
3433rexeqbi1dv 3309 . . . . . . 7 (𝑋 = 𝐽 → (∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥) ↔ ∃𝑤 𝐽𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥)))
3532, 34syl 17 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥) ↔ ∃𝑤 𝐽𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥)))
3631, 35mpbird 257 . . . . 5 ((𝜑𝑋 ≠ ∅) → ∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥))
37 ffn 6670 . . . . . 6 (𝐹:𝑋⟶ℝ+𝐹 Fn 𝑋)
38 breq1 5105 . . . . . . . 8 (𝑟 = (𝐹𝑤) → (𝑟 ≤ (𝐹𝑥) ↔ (𝐹𝑤) ≤ (𝐹𝑥)))
3938ralbidv 3156 . . . . . . 7 (𝑟 = (𝐹𝑤) → (∀𝑥𝑋 𝑟 ≤ (𝐹𝑥) ↔ ∀𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥)))
4039rexrn 7041 . . . . . 6 (𝐹 Fn 𝑋 → (∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥) ↔ ∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥)))
4119, 37, 403syl 18 . . . . 5 ((𝜑𝑋 ≠ ∅) → (∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥) ↔ ∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥)))
4236, 41mpbird 257 . . . 4 ((𝜑𝑋 ≠ ∅) → ∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥))
43 ssrexv 4013 . . . 4 (ran 𝐹 ⊆ ℝ+ → (∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∃𝑟 ∈ ℝ+𝑥𝑋 𝑟 ≤ (𝐹𝑥)))
4420, 42, 43sylc 65 . . 3 ((𝜑𝑋 ≠ ∅) → ∃𝑟 ∈ ℝ+𝑥𝑋 𝑟 ≤ (𝐹𝑥))
45 simpr 484 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
4614ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑋 = 𝑈)
47 simplr 768 . . . . . . . . . 10 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑋 ≠ ∅)
4846, 47eqnetrrd 2993 . . . . . . . . 9 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑈 ≠ ∅)
49 unieq 4878 . . . . . . . . . . 11 (𝑈 = ∅ → 𝑈 = ∅)
50 uni0 4895 . . . . . . . . . . 11 ∅ = ∅
5149, 50eqtrdi 2780 . . . . . . . . . 10 (𝑈 = ∅ → 𝑈 = ∅)
5251necon3i 2957 . . . . . . . . 9 ( 𝑈 ≠ ∅ → 𝑈 ≠ ∅)
5348, 52syl 17 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑈 ≠ ∅)
5415ad2antrr 726 . . . . . . . . 9 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑈 ∈ Fin)
55 hashnncl 14307 . . . . . . . . 9 (𝑈 ∈ Fin → ((♯‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
5654, 55syl 17 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → ((♯‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
5753, 56mpbird 257 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (♯‘𝑈) ∈ ℕ)
5857nnrpd 12969 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (♯‘𝑈) ∈ ℝ+)
5945, 58rpdivcld 12988 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (𝑟 / (♯‘𝑈)) ∈ ℝ+)
60 ralnex 3055 . . . . . . . 8 (∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 ↔ ¬ ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)
6154adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑈 ∈ Fin)
6253adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑈 ≠ ∅)
63 simprl 770 . . . . . . . . . . . . . . 15 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑥𝑋)
6463adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑥𝑋)
65 eqid 2729 . . . . . . . . . . . . . . 15 (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
6665metdsval 24769 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) = inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
6764, 66syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) = inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
6811ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
6968ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝐷 ∈ (Met‘𝑋))
70 difssd 4096 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑋𝑘) ⊆ 𝑋)
71 elssuni 4897 . . . . . . . . . . . . . . . . . 18 (𝑘𝑈𝑘 𝑈)
7271adantl 481 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑘 𝑈)
7346ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑋 = 𝑈)
7472, 73sseqtrrd 3981 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑘𝑋)
75 eleq1 2816 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑋 → (𝑘𝑈𝑋𝑈))
7675notbid 318 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑋 → (¬ 𝑘𝑈 ↔ ¬ 𝑋𝑈))
7716, 76syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑘 = 𝑋 → ¬ 𝑘𝑈))
7877necon2ad 2940 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑘𝑈𝑘𝑋))
7978ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝑘𝑈𝑘𝑋))
8079imp 406 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑘𝑋)
81 pssdifn0 4327 . . . . . . . . . . . . . . . 16 ((𝑘𝑋𝑘𝑋) → (𝑋𝑘) ≠ ∅)
8274, 80, 81syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑋𝑘) ≠ ∅)
8365metdsre 24775 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋 ∧ (𝑋𝑘) ≠ ∅) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
8469, 70, 82, 83syl3anc 1373 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
8584, 64ffvelcdmd 7039 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) ∈ ℝ)
8667, 85eqeltrrd 2829 . . . . . . . . . . . 12 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) ∈ ℝ)
8759ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑟 / (♯‘𝑈)) ∈ ℝ+)
8887rpred 12971 . . . . . . . . . . . 12 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑟 / (♯‘𝑈)) ∈ ℝ)
89 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)
90 sseq2 3970 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑘 → ((𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
9190notbid 318 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑘 → (¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 ↔ ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
9291rspccva 3584 . . . . . . . . . . . . . . . 16 ((∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢𝑘𝑈) → ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘)
9389, 92sylan 580 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘)
9469, 26syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝐷 ∈ (∞Met‘𝑋))
9587rpxrd 12972 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑟 / (♯‘𝑈)) ∈ ℝ*)
9665metdsge 24771 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋𝑥𝑋) ∧ (𝑟 / (♯‘𝑈)) ∈ ℝ*) → ((𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) ↔ ((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈)))) = ∅))
9794, 70, 64, 95, 96syl31anc 1375 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) ↔ ((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈)))) = ∅))
98 blssm 24339 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / (♯‘𝑈)) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑋)
9994, 64, 95, 98syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑋)
100 difin0ss 4332 . . . . . . . . . . . . . . . . 17 (((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈)))) = ∅ → ((𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑋 → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
10199, 100syl5com 31 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈)))) = ∅ → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
10297, 101sylbid 240 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
10393, 102mtod 198 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ¬ (𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥))
10485, 88ltnled 11297 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) < (𝑟 / (♯‘𝑈)) ↔ ¬ (𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥)))
105103, 104mpbird 257 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) < (𝑟 / (♯‘𝑈)))
10667, 105eqbrtrrd 5126 . . . . . . . . . . . 12 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) < (𝑟 / (♯‘𝑈)))
10761, 62, 86, 88, 106fsumlt 15742 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) < Σ𝑘𝑈 (𝑟 / (♯‘𝑈)))
108 oveq1 7376 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑦𝐷𝑧) = (𝑥𝐷𝑧))
109108mpteq2dv 5196 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)))
110109rneqd 5891 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)))
111110infeq1d 9405 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) = inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
112111sumeq2sdv 15645 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) = Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
113 sumex 15630 . . . . . . . . . . . . 13 Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) ∈ V
114112, 17, 113fvmpt 6950 . . . . . . . . . . . 12 (𝑥𝑋 → (𝐹𝑥) = Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
11563, 114syl 17 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) = Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
11659adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝑟 / (♯‘𝑈)) ∈ ℝ+)
117116rpcnd 12973 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝑟 / (♯‘𝑈)) ∈ ℂ)
118 fsumconst 15732 . . . . . . . . . . . . 13 ((𝑈 ∈ Fin ∧ (𝑟 / (♯‘𝑈)) ∈ ℂ) → Σ𝑘𝑈 (𝑟 / (♯‘𝑈)) = ((♯‘𝑈) · (𝑟 / (♯‘𝑈))))
11961, 117, 118syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → Σ𝑘𝑈 (𝑟 / (♯‘𝑈)) = ((♯‘𝑈) · (𝑟 / (♯‘𝑈))))
120 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑟 ∈ ℝ+)
121120rpcnd 12973 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑟 ∈ ℂ)
12257adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (♯‘𝑈) ∈ ℕ)
123122nncnd 12178 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (♯‘𝑈) ∈ ℂ)
124122nnne0d 12212 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (♯‘𝑈) ≠ 0)
125121, 123, 124divcan2d 11936 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → ((♯‘𝑈) · (𝑟 / (♯‘𝑈))) = 𝑟)
126119, 125eqtr2d 2765 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑟 = Σ𝑘𝑈 (𝑟 / (♯‘𝑈)))
127107, 115, 1263brtr4d 5134 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) < 𝑟)
12819ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝐹:𝑋⟶ℝ+)
129128, 63ffvelcdmd 7039 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) ∈ ℝ+)
130129rpred 12971 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) ∈ ℝ)
131120rpred 12971 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑟 ∈ ℝ)
132130, 131ltnled 11297 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → ((𝐹𝑥) < 𝑟 ↔ ¬ 𝑟 ≤ (𝐹𝑥)))
133127, 132mpbid 232 . . . . . . . . 9 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → ¬ 𝑟 ≤ (𝐹𝑥))
134133expr 456 . . . . . . . 8 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 → ¬ 𝑟 ≤ (𝐹𝑥)))
13560, 134biimtrrid 243 . . . . . . 7 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (¬ ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 → ¬ 𝑟 ≤ (𝐹𝑥)))
136135con4d 115 . . . . . 6 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑟 ≤ (𝐹𝑥) → ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
137136ralimdva 3145 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (∀𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
138 oveq2 7377 . . . . . . . . 9 (𝑑 = (𝑟 / (♯‘𝑈)) → (𝑥(ball‘𝐷)𝑑) = (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))))
139138sseq1d 3975 . . . . . . . 8 (𝑑 = (𝑟 / (♯‘𝑈)) → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
140139rexbidv 3157 . . . . . . 7 (𝑑 = (𝑟 / (♯‘𝑈)) → (∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
141140ralbidv 3156 . . . . . 6 (𝑑 = (𝑟 / (♯‘𝑈)) → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
142141rspcev 3585 . . . . 5 (((𝑟 / (♯‘𝑈)) ∈ ℝ+ ∧ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
14359, 137, 142syl6an 684 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (∀𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
144143rexlimdva 3134 . . 3 ((𝜑𝑋 ≠ ∅) → (∃𝑟 ∈ ℝ+𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
14544, 144mpd 15 . 2 ((𝜑𝑋 ≠ ∅) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
1469, 145pm2.61dane 3012 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3908  cin 3910  wss 3911  c0 4292   cuni 4867   class class class wbr 5102  cmpt 5183  ran crn 5632   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  infcinf 9368  cc 11042  cr 11043  1c1 11045   · cmul 11049  *cxr 11183   < clt 11184  cle 11185   / cdiv 11811  cn 12162  +crp 12927  (,)cioo 13282  chash 14271  Σcsu 15628  topGenctg 17376  ∞Metcxmet 21281  Metcmet 21282  ballcbl 21283  MetOpencmopn 21286   Cn ccn 23144  Compccmp 23306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-ec 8650  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-cn 23147  df-cnp 23148  df-cmp 23307  df-tx 23482  df-hmeo 23675  df-xms 24241  df-ms 24242  df-tms 24243
This theorem is referenced by:  lebnum  24896
  Copyright terms: Public domain W3C validator