MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumlem3 Structured version   Visualization version   GIF version

Theorem lebnumlem3 24032
Description: Lemma for lebnum 24033. By the previous lemmas, 𝐹 is continuous and positive on a compact set, so it has a positive minimum 𝑟. Then setting 𝑑 = 𝑟 / ♯(𝑈), since for each 𝑢𝑈 we have ball(𝑥, 𝑑) ⊆ 𝑢 iff 𝑑𝑑(𝑥, 𝑋𝑢), if ¬ ball(𝑥, 𝑑) ⊆ 𝑢 for all 𝑢 then summing over 𝑢 yields Σ𝑢𝑈𝑑(𝑥, 𝑋𝑢) = 𝐹(𝑥) < Σ𝑢𝑈𝑑 = 𝑟, in contradiction to the assumption that 𝑟 is the minimum of 𝐹. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) (Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j 𝐽 = (MetOpen‘𝐷)
lebnum.d (𝜑𝐷 ∈ (Met‘𝑋))
lebnum.c (𝜑𝐽 ∈ Comp)
lebnum.s (𝜑𝑈𝐽)
lebnum.u (𝜑𝑋 = 𝑈)
lebnumlem1.u (𝜑𝑈 ∈ Fin)
lebnumlem1.n (𝜑 → ¬ 𝑋𝑈)
lebnumlem1.f 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
lebnumlem2.k 𝐾 = (topGen‘ran (,))
Assertion
Ref Expression
lebnumlem3 (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Distinct variable groups:   𝑘,𝑑,𝑢,𝑥,𝑦,𝑧,𝐷   𝐽,𝑑,𝑘,𝑥,𝑦,𝑧   𝑈,𝑑,𝑘,𝑢,𝑥,𝑦,𝑧   𝑥,𝐹   𝜑,𝑑,𝑘,𝑥,𝑦,𝑧   𝑋,𝑑,𝑘,𝑢,𝑥,𝑦,𝑧   𝑥,𝐾
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑦,𝑧,𝑢,𝑘,𝑑)   𝐽(𝑢)   𝐾(𝑦,𝑧,𝑢,𝑘,𝑑)

Proof of Theorem lebnumlem3
Dummy variables 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 12663 . . . 4 1 ∈ ℝ+
21ne0ii 4268 . . 3 + ≠ ∅
3 ral0 4440 . . . . 5 𝑥 ∈ ∅ ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢
4 simpr 484 . . . . . 6 ((𝜑𝑋 = ∅) → 𝑋 = ∅)
54raleqdv 3339 . . . . 5 ((𝜑𝑋 = ∅) → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥 ∈ ∅ ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
63, 5mpbiri 257 . . . 4 ((𝜑𝑋 = ∅) → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
76ralrimivw 3108 . . 3 ((𝜑𝑋 = ∅) → ∀𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
8 r19.2z 4422 . . 3 ((ℝ+ ≠ ∅ ∧ ∀𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
92, 7, 8sylancr 586 . 2 ((𝜑𝑋 = ∅) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
10 lebnum.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
11 lebnum.d . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
12 lebnum.c . . . . . . 7 (𝜑𝐽 ∈ Comp)
13 lebnum.s . . . . . . 7 (𝜑𝑈𝐽)
14 lebnum.u . . . . . . 7 (𝜑𝑋 = 𝑈)
15 lebnumlem1.u . . . . . . 7 (𝜑𝑈 ∈ Fin)
16 lebnumlem1.n . . . . . . 7 (𝜑 → ¬ 𝑋𝑈)
17 lebnumlem1.f . . . . . . 7 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
1810, 11, 12, 13, 14, 15, 16, 17lebnumlem1 24030 . . . . . 6 (𝜑𝐹:𝑋⟶ℝ+)
1918adantr 480 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝐹:𝑋⟶ℝ+)
2019frnd 6592 . . . 4 ((𝜑𝑋 ≠ ∅) → ran 𝐹 ⊆ ℝ+)
21 eqid 2738 . . . . . . 7 𝐽 = 𝐽
22 lebnumlem2.k . . . . . . 7 𝐾 = (topGen‘ran (,))
2312adantr 480 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝐽 ∈ Comp)
2410, 11, 12, 13, 14, 15, 16, 17, 22lebnumlem2 24031 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2524adantr 480 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾))
26 metxmet 23395 . . . . . . . . . 10 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2710mopnuni 23502 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
2811, 26, 273syl 18 . . . . . . . . 9 (𝜑𝑋 = 𝐽)
2928neeq1d 3002 . . . . . . . 8 (𝜑 → (𝑋 ≠ ∅ ↔ 𝐽 ≠ ∅))
3029biimpa 476 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝐽 ≠ ∅)
3121, 22, 23, 25, 30evth2 24029 . . . . . 6 ((𝜑𝑋 ≠ ∅) → ∃𝑤 𝐽𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥))
3228adantr 480 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝑋 = 𝐽)
33 raleq 3333 . . . . . . . 8 (𝑋 = 𝐽 → (∀𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥) ↔ ∀𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥)))
3433rexeqbi1dv 3332 . . . . . . 7 (𝑋 = 𝐽 → (∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥) ↔ ∃𝑤 𝐽𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥)))
3532, 34syl 17 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥) ↔ ∃𝑤 𝐽𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥)))
3631, 35mpbird 256 . . . . 5 ((𝜑𝑋 ≠ ∅) → ∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥))
37 ffn 6584 . . . . . 6 (𝐹:𝑋⟶ℝ+𝐹 Fn 𝑋)
38 breq1 5073 . . . . . . . 8 (𝑟 = (𝐹𝑤) → (𝑟 ≤ (𝐹𝑥) ↔ (𝐹𝑤) ≤ (𝐹𝑥)))
3938ralbidv 3120 . . . . . . 7 (𝑟 = (𝐹𝑤) → (∀𝑥𝑋 𝑟 ≤ (𝐹𝑥) ↔ ∀𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥)))
4039rexrn 6945 . . . . . 6 (𝐹 Fn 𝑋 → (∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥) ↔ ∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥)))
4119, 37, 403syl 18 . . . . 5 ((𝜑𝑋 ≠ ∅) → (∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥) ↔ ∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥)))
4236, 41mpbird 256 . . . 4 ((𝜑𝑋 ≠ ∅) → ∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥))
43 ssrexv 3984 . . . 4 (ran 𝐹 ⊆ ℝ+ → (∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∃𝑟 ∈ ℝ+𝑥𝑋 𝑟 ≤ (𝐹𝑥)))
4420, 42, 43sylc 65 . . 3 ((𝜑𝑋 ≠ ∅) → ∃𝑟 ∈ ℝ+𝑥𝑋 𝑟 ≤ (𝐹𝑥))
45 simpr 484 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
4614ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑋 = 𝑈)
47 simplr 765 . . . . . . . . . 10 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑋 ≠ ∅)
4846, 47eqnetrrd 3011 . . . . . . . . 9 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑈 ≠ ∅)
49 unieq 4847 . . . . . . . . . . 11 (𝑈 = ∅ → 𝑈 = ∅)
50 uni0 4866 . . . . . . . . . . 11 ∅ = ∅
5149, 50eqtrdi 2795 . . . . . . . . . 10 (𝑈 = ∅ → 𝑈 = ∅)
5251necon3i 2975 . . . . . . . . 9 ( 𝑈 ≠ ∅ → 𝑈 ≠ ∅)
5348, 52syl 17 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑈 ≠ ∅)
5415ad2antrr 722 . . . . . . . . 9 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑈 ∈ Fin)
55 hashnncl 14009 . . . . . . . . 9 (𝑈 ∈ Fin → ((♯‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
5654, 55syl 17 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → ((♯‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
5753, 56mpbird 256 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (♯‘𝑈) ∈ ℕ)
5857nnrpd 12699 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (♯‘𝑈) ∈ ℝ+)
5945, 58rpdivcld 12718 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (𝑟 / (♯‘𝑈)) ∈ ℝ+)
60 ralnex 3163 . . . . . . . 8 (∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 ↔ ¬ ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)
6154adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑈 ∈ Fin)
6253adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑈 ≠ ∅)
63 simprl 767 . . . . . . . . . . . . . . 15 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑥𝑋)
6463adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑥𝑋)
65 eqid 2738 . . . . . . . . . . . . . . 15 (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
6665metdsval 23916 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) = inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
6764, 66syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) = inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
6811ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
6968ad2antrr 722 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝐷 ∈ (Met‘𝑋))
70 difssd 4063 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑋𝑘) ⊆ 𝑋)
71 elssuni 4868 . . . . . . . . . . . . . . . . . 18 (𝑘𝑈𝑘 𝑈)
7271adantl 481 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑘 𝑈)
7346ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑋 = 𝑈)
7472, 73sseqtrrd 3958 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑘𝑋)
75 eleq1 2826 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑋 → (𝑘𝑈𝑋𝑈))
7675notbid 317 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑋 → (¬ 𝑘𝑈 ↔ ¬ 𝑋𝑈))
7716, 76syl5ibrcom 246 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑘 = 𝑋 → ¬ 𝑘𝑈))
7877necon2ad 2957 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑘𝑈𝑘𝑋))
7978ad3antrrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝑘𝑈𝑘𝑋))
8079imp 406 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑘𝑋)
81 pssdifn0 4296 . . . . . . . . . . . . . . . 16 ((𝑘𝑋𝑘𝑋) → (𝑋𝑘) ≠ ∅)
8274, 80, 81syl2anc 583 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑋𝑘) ≠ ∅)
8365metdsre 23922 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋 ∧ (𝑋𝑘) ≠ ∅) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
8469, 70, 82, 83syl3anc 1369 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
8584, 64ffvelrnd 6944 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) ∈ ℝ)
8667, 85eqeltrrd 2840 . . . . . . . . . . . 12 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) ∈ ℝ)
8759ad2antrr 722 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑟 / (♯‘𝑈)) ∈ ℝ+)
8887rpred 12701 . . . . . . . . . . . 12 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑟 / (♯‘𝑈)) ∈ ℝ)
89 simprr 769 . . . . . . . . . . . . . . . 16 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)
90 sseq2 3943 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑘 → ((𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
9190notbid 317 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑘 → (¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 ↔ ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
9291rspccva 3551 . . . . . . . . . . . . . . . 16 ((∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢𝑘𝑈) → ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘)
9389, 92sylan 579 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘)
9469, 26syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝐷 ∈ (∞Met‘𝑋))
9587rpxrd 12702 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑟 / (♯‘𝑈)) ∈ ℝ*)
9665metdsge 23918 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋𝑥𝑋) ∧ (𝑟 / (♯‘𝑈)) ∈ ℝ*) → ((𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) ↔ ((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈)))) = ∅))
9794, 70, 64, 95, 96syl31anc 1371 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) ↔ ((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈)))) = ∅))
98 blssm 23479 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / (♯‘𝑈)) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑋)
9994, 64, 95, 98syl3anc 1369 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑋)
100 difin0ss 4299 . . . . . . . . . . . . . . . . 17 (((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈)))) = ∅ → ((𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑋 → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
10199, 100syl5com 31 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈)))) = ∅ → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
10297, 101sylbid 239 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) → (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑘))
10393, 102mtod 197 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ¬ (𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥))
10485, 88ltnled 11052 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) < (𝑟 / (♯‘𝑈)) ↔ ¬ (𝑟 / (♯‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥)))
105103, 104mpbird 256 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) < (𝑟 / (♯‘𝑈)))
10667, 105eqbrtrrd 5094 . . . . . . . . . . . 12 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) < (𝑟 / (♯‘𝑈)))
10761, 62, 86, 88, 106fsumlt 15440 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) < Σ𝑘𝑈 (𝑟 / (♯‘𝑈)))
108 oveq1 7262 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑦𝐷𝑧) = (𝑥𝐷𝑧))
109108mpteq2dv 5172 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)))
110109rneqd 5836 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)))
111110infeq1d 9166 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) = inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
112111sumeq2sdv 15344 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) = Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
113 sumex 15327 . . . . . . . . . . . . 13 Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) ∈ V
114112, 17, 113fvmpt 6857 . . . . . . . . . . . 12 (𝑥𝑋 → (𝐹𝑥) = Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
11563, 114syl 17 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) = Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
11659adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝑟 / (♯‘𝑈)) ∈ ℝ+)
117116rpcnd 12703 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝑟 / (♯‘𝑈)) ∈ ℂ)
118 fsumconst 15430 . . . . . . . . . . . . 13 ((𝑈 ∈ Fin ∧ (𝑟 / (♯‘𝑈)) ∈ ℂ) → Σ𝑘𝑈 (𝑟 / (♯‘𝑈)) = ((♯‘𝑈) · (𝑟 / (♯‘𝑈))))
11961, 117, 118syl2anc 583 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → Σ𝑘𝑈 (𝑟 / (♯‘𝑈)) = ((♯‘𝑈) · (𝑟 / (♯‘𝑈))))
120 simplr 765 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑟 ∈ ℝ+)
121120rpcnd 12703 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑟 ∈ ℂ)
12257adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (♯‘𝑈) ∈ ℕ)
123122nncnd 11919 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (♯‘𝑈) ∈ ℂ)
124122nnne0d 11953 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (♯‘𝑈) ≠ 0)
125121, 123, 124divcan2d 11683 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → ((♯‘𝑈) · (𝑟 / (♯‘𝑈))) = 𝑟)
126119, 125eqtr2d 2779 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑟 = Σ𝑘𝑈 (𝑟 / (♯‘𝑈)))
127107, 115, 1263brtr4d 5102 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) < 𝑟)
12819ad2antrr 722 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝐹:𝑋⟶ℝ+)
129128, 63ffvelrnd 6944 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) ∈ ℝ+)
130129rpred 12701 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) ∈ ℝ)
131120rpred 12701 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → 𝑟 ∈ ℝ)
132130, 131ltnled 11052 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → ((𝐹𝑥) < 𝑟 ↔ ¬ 𝑟 ≤ (𝐹𝑥)))
133127, 132mpbid 231 . . . . . . . . 9 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢)) → ¬ 𝑟 ≤ (𝐹𝑥))
134133expr 456 . . . . . . . 8 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 → ¬ 𝑟 ≤ (𝐹𝑥)))
13560, 134syl5bir 242 . . . . . . 7 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (¬ ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢 → ¬ 𝑟 ≤ (𝐹𝑥)))
136135con4d 115 . . . . . 6 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑟 ≤ (𝐹𝑥) → ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
137136ralimdva 3102 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (∀𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
138 oveq2 7263 . . . . . . . . 9 (𝑑 = (𝑟 / (♯‘𝑈)) → (𝑥(ball‘𝐷)𝑑) = (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))))
139138sseq1d 3948 . . . . . . . 8 (𝑑 = (𝑟 / (♯‘𝑈)) → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
140139rexbidv 3225 . . . . . . 7 (𝑑 = (𝑟 / (♯‘𝑈)) → (∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
141140ralbidv 3120 . . . . . 6 (𝑑 = (𝑟 / (♯‘𝑈)) → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢))
142141rspcev 3552 . . . . 5 (((𝑟 / (♯‘𝑈)) ∈ ℝ+ ∧ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (♯‘𝑈))) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
14359, 137, 142syl6an 680 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (∀𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
144143rexlimdva 3212 . . 3 ((𝜑𝑋 ≠ ∅) → (∃𝑟 ∈ ℝ+𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
14544, 144mpd 15 . 2 ((𝜑𝑋 ≠ ∅) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
1469, 145pm2.61dane 3031 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cdif 3880  cin 3882  wss 3883  c0 4253   cuni 4836   class class class wbr 5070  cmpt 5153  ran crn 5581   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  infcinf 9130  cc 10800  cr 10801  1c1 10803   · cmul 10807  *cxr 10939   < clt 10940  cle 10941   / cdiv 11562  cn 11903  +crp 12659  (,)cioo 13008  chash 13972  Σcsu 15325  topGenctg 17065  ∞Metcxmet 20495  Metcmet 20496  ballcbl 20497  MetOpencmopn 20500   Cn ccn 22283  Compccmp 22445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-ec 8458  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-cn 22286  df-cnp 22287  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383
This theorem is referenced by:  lebnum  24033
  Copyright terms: Public domain W3C validator