MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfi Structured version   Visualization version   GIF version

Theorem tfi 7571
Description: The Principle of Transfinite Induction. Theorem 7.17 of [TakeutiZaring] p. 39. This principle states that if 𝐴 is a class of ordinal numbers with the property that every ordinal number included in 𝐴 also belongs to 𝐴, then every ordinal number is in 𝐴.

See theorem tfindes 7580 or tfinds 7577 for the version involving basis and induction hypotheses. (Contributed by NM, 18-Feb-2004.)

Assertion
Ref Expression
tfi ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥𝐴𝑥𝐴)) → 𝐴 = On)
Distinct variable group:   𝑥,𝐴

Proof of Theorem tfi
StepHypRef Expression
1 eldifn 4107 . . . . . . . . 9 (𝑥 ∈ (On ∖ 𝐴) → ¬ 𝑥𝐴)
21adantl 484 . . . . . . . 8 (((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (On ∖ 𝐴)) → ¬ 𝑥𝐴)
3 onss 7508 . . . . . . . . . . . 12 (𝑥 ∈ On → 𝑥 ⊆ On)
4 difin0ss 4331 . . . . . . . . . . . 12 (((On ∖ 𝐴) ∩ 𝑥) = ∅ → (𝑥 ⊆ On → 𝑥𝐴))
53, 4syl5com 31 . . . . . . . . . . 11 (𝑥 ∈ On → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥𝐴))
65imim1d 82 . . . . . . . . . 10 (𝑥 ∈ On → ((𝑥𝐴𝑥𝐴) → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥𝐴)))
76a2i 14 . . . . . . . . 9 ((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) → (𝑥 ∈ On → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥𝐴)))
8 eldifi 4106 . . . . . . . . 9 (𝑥 ∈ (On ∖ 𝐴) → 𝑥 ∈ On)
97, 8impel 508 . . . . . . . 8 (((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (On ∖ 𝐴)) → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥𝐴))
102, 9mtod 200 . . . . . . 7 (((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (On ∖ 𝐴)) → ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅)
1110ex 415 . . . . . 6 ((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) → (𝑥 ∈ (On ∖ 𝐴) → ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅))
1211ralimi2 3160 . . . . 5 (∀𝑥 ∈ On (𝑥𝐴𝑥𝐴) → ∀𝑥 ∈ (On ∖ 𝐴) ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅)
13 ralnex 3239 . . . . 5 (∀𝑥 ∈ (On ∖ 𝐴) ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅ ↔ ¬ ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
1412, 13sylib 220 . . . 4 (∀𝑥 ∈ On (𝑥𝐴𝑥𝐴) → ¬ ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
15 ssdif0 4326 . . . . . 6 (On ⊆ 𝐴 ↔ (On ∖ 𝐴) = ∅)
1615necon3bbii 3066 . . . . 5 (¬ On ⊆ 𝐴 ↔ (On ∖ 𝐴) ≠ ∅)
17 ordon 7501 . . . . . 6 Ord On
18 difss 4111 . . . . . 6 (On ∖ 𝐴) ⊆ On
19 tz7.5 6215 . . . . . 6 ((Ord On ∧ (On ∖ 𝐴) ⊆ On ∧ (On ∖ 𝐴) ≠ ∅) → ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
2017, 18, 19mp3an12 1447 . . . . 5 ((On ∖ 𝐴) ≠ ∅ → ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
2116, 20sylbi 219 . . . 4 (¬ On ⊆ 𝐴 → ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
2214, 21nsyl2 143 . . 3 (∀𝑥 ∈ On (𝑥𝐴𝑥𝐴) → On ⊆ 𝐴)
2322anim2i 618 . 2 ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥𝐴𝑥𝐴)) → (𝐴 ⊆ On ∧ On ⊆ 𝐴))
24 eqss 3985 . 2 (𝐴 = On ↔ (𝐴 ⊆ On ∧ On ⊆ 𝐴))
2523, 24sylibr 236 1 ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥𝐴𝑥𝐴)) → 𝐴 = On)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wcel 2113  wne 3019  wral 3141  wrex 3142  cdif 3936  cin 3938  wss 3939  c0 4294  Ord word 6193  Oncon0 6194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-tr 5176  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-ord 6197  df-on 6198
This theorem is referenced by:  tfis  7572  tfisg  33059  onsetrec  44817
  Copyright terms: Public domain W3C validator