Proof of Theorem tfi
| Step | Hyp | Ref
| Expression |
| 1 | | eldifn 4112 |
. . . . . . . . 9
⊢ (𝑥 ∈ (On ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) |
| 2 | 1 | adantl 481 |
. . . . . . . 8
⊢ (((𝑥 ∈ On → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) ∧ 𝑥 ∈ (On ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
| 3 | | onss 7784 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ On → 𝑥 ⊆ On) |
| 4 | | difin0ss 4353 |
. . . . . . . . . . . 12
⊢ (((On
∖ 𝐴) ∩ 𝑥) = ∅ → (𝑥 ⊆ On → 𝑥 ⊆ 𝐴)) |
| 5 | 3, 4 | syl5com 31 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On → (((On ∖
𝐴) ∩ 𝑥) = ∅ → 𝑥 ⊆ 𝐴)) |
| 6 | 5 | imim1d 82 |
. . . . . . . . . 10
⊢ (𝑥 ∈ On → ((𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥 ∈ 𝐴))) |
| 7 | 6 | a2i 14 |
. . . . . . . . 9
⊢ ((𝑥 ∈ On → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → (𝑥 ∈ On → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥 ∈ 𝐴))) |
| 8 | | eldifi 4111 |
. . . . . . . . 9
⊢ (𝑥 ∈ (On ∖ 𝐴) → 𝑥 ∈ On) |
| 9 | 7, 8 | impel 505 |
. . . . . . . 8
⊢ (((𝑥 ∈ On → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) ∧ 𝑥 ∈ (On ∖ 𝐴)) → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥 ∈ 𝐴)) |
| 10 | 2, 9 | mtod 198 |
. . . . . . 7
⊢ (((𝑥 ∈ On → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) ∧ 𝑥 ∈ (On ∖ 𝐴)) → ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅) |
| 11 | 10 | ex 412 |
. . . . . 6
⊢ ((𝑥 ∈ On → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → (𝑥 ∈ (On ∖ 𝐴) → ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅)) |
| 12 | 11 | ralimi2 3069 |
. . . . 5
⊢
(∀𝑥 ∈ On
(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → ∀𝑥 ∈ (On ∖ 𝐴) ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅) |
| 13 | | ralnex 3063 |
. . . . 5
⊢
(∀𝑥 ∈
(On ∖ 𝐴) ¬ ((On
∖ 𝐴) ∩ 𝑥) = ∅ ↔ ¬
∃𝑥 ∈ (On ∖
𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅) |
| 14 | 12, 13 | sylib 218 |
. . . 4
⊢
(∀𝑥 ∈ On
(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → ¬ ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅) |
| 15 | | ssdif0 4346 |
. . . . . 6
⊢ (On
⊆ 𝐴 ↔ (On
∖ 𝐴) =
∅) |
| 16 | 15 | necon3bbii 2980 |
. . . . 5
⊢ (¬ On
⊆ 𝐴 ↔ (On
∖ 𝐴) ≠
∅) |
| 17 | | ordon 7776 |
. . . . . 6
⊢ Ord
On |
| 18 | | difss 4116 |
. . . . . 6
⊢ (On
∖ 𝐴) ⊆
On |
| 19 | | tz7.5 6378 |
. . . . . 6
⊢ ((Ord On
∧ (On ∖ 𝐴)
⊆ On ∧ (On ∖ 𝐴) ≠ ∅) → ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅) |
| 20 | 17, 18, 19 | mp3an12 1453 |
. . . . 5
⊢ ((On
∖ 𝐴) ≠ ∅
→ ∃𝑥 ∈ (On
∖ 𝐴)((On ∖
𝐴) ∩ 𝑥) = ∅) |
| 21 | 16, 20 | sylbi 217 |
. . . 4
⊢ (¬ On
⊆ 𝐴 →
∃𝑥 ∈ (On ∖
𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅) |
| 22 | 14, 21 | nsyl2 141 |
. . 3
⊢
(∀𝑥 ∈ On
(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → On ⊆ 𝐴) |
| 23 | 22 | anim2i 617 |
. 2
⊢ ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → (𝐴 ⊆ On ∧ On ⊆ 𝐴)) |
| 24 | | eqss 3979 |
. 2
⊢ (𝐴 = On ↔ (𝐴 ⊆ On ∧ On ⊆ 𝐴)) |
| 25 | 23, 24 | sylibr 234 |
1
⊢ ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → 𝐴 = On) |