MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfi Structured version   Visualization version   GIF version

Theorem tfi 7331
Description: The Principle of Transfinite Induction. Theorem 7.17 of [TakeutiZaring] p. 39. This principle states that if 𝐴 is a class of ordinal numbers with the property that every ordinal number included in 𝐴 also belongs to 𝐴, then every ordinal number is in 𝐴.

See theorem tfindes 7340 or tfinds 7337 for the version involving basis and induction hypotheses. (Contributed by NM, 18-Feb-2004.)

Assertion
Ref Expression
tfi ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥𝐴𝑥𝐴)) → 𝐴 = On)
Distinct variable group:   𝑥,𝐴

Proof of Theorem tfi
StepHypRef Expression
1 eldifn 3956 . . . . . . . . 9 (𝑥 ∈ (On ∖ 𝐴) → ¬ 𝑥𝐴)
21adantl 475 . . . . . . . 8 (((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (On ∖ 𝐴)) → ¬ 𝑥𝐴)
3 onss 7268 . . . . . . . . . . . 12 (𝑥 ∈ On → 𝑥 ⊆ On)
4 difin0ss 4177 . . . . . . . . . . . 12 (((On ∖ 𝐴) ∩ 𝑥) = ∅ → (𝑥 ⊆ On → 𝑥𝐴))
53, 4syl5com 31 . . . . . . . . . . 11 (𝑥 ∈ On → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥𝐴))
65imim1d 82 . . . . . . . . . 10 (𝑥 ∈ On → ((𝑥𝐴𝑥𝐴) → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥𝐴)))
76a2i 14 . . . . . . . . 9 ((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) → (𝑥 ∈ On → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥𝐴)))
8 eldifi 3955 . . . . . . . . 9 (𝑥 ∈ (On ∖ 𝐴) → 𝑥 ∈ On)
97, 8impel 501 . . . . . . . 8 (((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (On ∖ 𝐴)) → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥𝐴))
102, 9mtod 190 . . . . . . 7 (((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (On ∖ 𝐴)) → ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅)
1110ex 403 . . . . . 6 ((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) → (𝑥 ∈ (On ∖ 𝐴) → ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅))
1211ralimi2 3131 . . . . 5 (∀𝑥 ∈ On (𝑥𝐴𝑥𝐴) → ∀𝑥 ∈ (On ∖ 𝐴) ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅)
13 ralnex 3174 . . . . 5 (∀𝑥 ∈ (On ∖ 𝐴) ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅ ↔ ¬ ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
1412, 13sylib 210 . . . 4 (∀𝑥 ∈ On (𝑥𝐴𝑥𝐴) → ¬ ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
15 ssdif0 4172 . . . . . 6 (On ⊆ 𝐴 ↔ (On ∖ 𝐴) = ∅)
1615necon3bbii 3016 . . . . 5 (¬ On ⊆ 𝐴 ↔ (On ∖ 𝐴) ≠ ∅)
17 ordon 7261 . . . . . 6 Ord On
18 difss 3960 . . . . . 6 (On ∖ 𝐴) ⊆ On
19 tz7.5 5997 . . . . . 6 ((Ord On ∧ (On ∖ 𝐴) ⊆ On ∧ (On ∖ 𝐴) ≠ ∅) → ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
2017, 18, 19mp3an12 1524 . . . . 5 ((On ∖ 𝐴) ≠ ∅ → ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
2116, 20sylbi 209 . . . 4 (¬ On ⊆ 𝐴 → ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
2214, 21nsyl2 145 . . 3 (∀𝑥 ∈ On (𝑥𝐴𝑥𝐴) → On ⊆ 𝐴)
2322anim2i 610 . 2 ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥𝐴𝑥𝐴)) → (𝐴 ⊆ On ∧ On ⊆ 𝐴))
24 eqss 3836 . 2 (𝐴 = On ↔ (𝐴 ⊆ On ∧ On ⊆ 𝐴))
2523, 24sylibr 226 1 ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥𝐴𝑥𝐴)) → 𝐴 = On)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1601  wcel 2107  wne 2969  wral 3090  wrex 3091  cdif 3789  cin 3791  wss 3792  c0 4141  Ord word 5975  Oncon0 5976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-tr 4988  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-ord 5979  df-on 5980
This theorem is referenced by:  tfis  7332  tfisg  32304  onsetrec  43563
  Copyright terms: Public domain W3C validator