MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfi Structured version   Visualization version   GIF version

Theorem tfi 7783
Description: The Principle of Transfinite Induction. Theorem 7.17 of [TakeutiZaring] p. 39. This principle states that if 𝐴 is a class of ordinal numbers with the property that every ordinal number included in 𝐴 also belongs to 𝐴, then every ordinal number is in 𝐴.

See Theorem tfindes 7793 or tfinds 7790 for the version involving basis and induction hypotheses. (Contributed by NM, 18-Feb-2004.)

Assertion
Ref Expression
tfi ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥𝐴𝑥𝐴)) → 𝐴 = On)
Distinct variable group:   𝑥,𝐴

Proof of Theorem tfi
StepHypRef Expression
1 eldifn 4079 . . . . . . . . 9 (𝑥 ∈ (On ∖ 𝐴) → ¬ 𝑥𝐴)
21adantl 481 . . . . . . . 8 (((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (On ∖ 𝐴)) → ¬ 𝑥𝐴)
3 onss 7718 . . . . . . . . . . . 12 (𝑥 ∈ On → 𝑥 ⊆ On)
4 difin0ss 4320 . . . . . . . . . . . 12 (((On ∖ 𝐴) ∩ 𝑥) = ∅ → (𝑥 ⊆ On → 𝑥𝐴))
53, 4syl5com 31 . . . . . . . . . . 11 (𝑥 ∈ On → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥𝐴))
65imim1d 82 . . . . . . . . . 10 (𝑥 ∈ On → ((𝑥𝐴𝑥𝐴) → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥𝐴)))
76a2i 14 . . . . . . . . 9 ((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) → (𝑥 ∈ On → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥𝐴)))
8 eldifi 4078 . . . . . . . . 9 (𝑥 ∈ (On ∖ 𝐴) → 𝑥 ∈ On)
97, 8impel 505 . . . . . . . 8 (((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (On ∖ 𝐴)) → (((On ∖ 𝐴) ∩ 𝑥) = ∅ → 𝑥𝐴))
102, 9mtod 198 . . . . . . 7 (((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (On ∖ 𝐴)) → ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅)
1110ex 412 . . . . . 6 ((𝑥 ∈ On → (𝑥𝐴𝑥𝐴)) → (𝑥 ∈ (On ∖ 𝐴) → ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅))
1211ralimi2 3064 . . . . 5 (∀𝑥 ∈ On (𝑥𝐴𝑥𝐴) → ∀𝑥 ∈ (On ∖ 𝐴) ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅)
13 ralnex 3058 . . . . 5 (∀𝑥 ∈ (On ∖ 𝐴) ¬ ((On ∖ 𝐴) ∩ 𝑥) = ∅ ↔ ¬ ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
1412, 13sylib 218 . . . 4 (∀𝑥 ∈ On (𝑥𝐴𝑥𝐴) → ¬ ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
15 ssdif0 4313 . . . . . 6 (On ⊆ 𝐴 ↔ (On ∖ 𝐴) = ∅)
1615necon3bbii 2975 . . . . 5 (¬ On ⊆ 𝐴 ↔ (On ∖ 𝐴) ≠ ∅)
17 ordon 7710 . . . . . 6 Ord On
18 difss 4083 . . . . . 6 (On ∖ 𝐴) ⊆ On
19 tz7.5 6327 . . . . . 6 ((Ord On ∧ (On ∖ 𝐴) ⊆ On ∧ (On ∖ 𝐴) ≠ ∅) → ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
2017, 18, 19mp3an12 1453 . . . . 5 ((On ∖ 𝐴) ≠ ∅ → ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
2116, 20sylbi 217 . . . 4 (¬ On ⊆ 𝐴 → ∃𝑥 ∈ (On ∖ 𝐴)((On ∖ 𝐴) ∩ 𝑥) = ∅)
2214, 21nsyl2 141 . . 3 (∀𝑥 ∈ On (𝑥𝐴𝑥𝐴) → On ⊆ 𝐴)
2322anim2i 617 . 2 ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥𝐴𝑥𝐴)) → (𝐴 ⊆ On ∧ On ⊆ 𝐴))
24 eqss 3945 . 2 (𝐴 = On ↔ (𝐴 ⊆ On ∧ On ⊆ 𝐴))
2523, 24sylibr 234 1 ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥𝐴𝑥𝐴)) → 𝐴 = On)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cdif 3894  cin 3896  wss 3897  c0 4280  Ord word 6305  Oncon0 6306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-on 6310
This theorem is referenced by:  tfisg  7784  tfis  7785  onsetrec  49748
  Copyright terms: Public domain W3C validator