MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inssdif0 Structured version   Visualization version   GIF version

Theorem inssdif0 4369
Description: Intersection, subclass, and difference relationship. (Contributed by NM, 27-Oct-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
Assertion
Ref Expression
inssdif0 ((𝐴𝐵) ⊆ 𝐶 ↔ (𝐴 ∩ (𝐵𝐶)) = ∅)

Proof of Theorem inssdif0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3964 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
21imbi1i 349 . . . . 5 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) → 𝑥𝐶))
3 iman 401 . . . . 5 (((𝑥𝐴𝑥𝐵) → 𝑥𝐶) ↔ ¬ ((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶))
42, 3bitri 275 . . . 4 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ¬ ((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶))
5 eldif 3958 . . . . . 6 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐶))
65anbi2i 622 . . . . 5 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
7 elin 3964 . . . . 5 (𝑥 ∈ (𝐴 ∩ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
8 anass 468 . . . . 5 (((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
96, 7, 83bitr4ri 304 . . . 4 (((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
104, 9xchbinx 334 . . 3 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ¬ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
1110albii 1820 . 2 (∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
12 dfss2 3968 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
13 eq0 4343 . 2 ((𝐴 ∩ (𝐵𝐶)) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
1411, 12, 133bitr4i 303 1 ((𝐴𝐵) ⊆ 𝐶 ↔ (𝐴 ∩ (𝐵𝐶)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1538   = wceq 1540  wcel 2105  cdif 3945  cin 3947  wss 3948  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-dif 3951  df-in 3955  df-ss 3965  df-nul 4323
This theorem is referenced by:  disjdif  4471  inf3lem3  9631  ssfin4  10311  isnrm2  23181  1stccnp  23285  llycmpkgen2  23373  ufileu  23742  fclscf  23848  flimfnfcls  23851  inindif  32186  opnbnd  35673  diophrw  41959  setindtr  42225
  Copyright terms: Public domain W3C validator