Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inssdif0 | Structured version Visualization version GIF version |
Description: Intersection, subclass, and difference relationship. (Contributed by NM, 27-Oct-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.) |
Ref | Expression |
---|---|
inssdif0 | ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3903 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | 1 | imbi1i 350 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶)) |
3 | iman 402 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶) ↔ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝐶)) | |
4 | 2, 3 | bitri 274 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶) ↔ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝐶)) |
5 | eldif 3897 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
6 | 5 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
7 | elin 3903 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∖ 𝐶))) | |
8 | anass 469 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) | |
9 | 6, 7, 8 | 3bitr4ri 304 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶))) |
10 | 4, 9 | xchbinx 334 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶) ↔ ¬ 𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶))) |
11 | 10 | albii 1822 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶))) |
12 | dfss2 3907 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶)) | |
13 | eq0 4277 | . 2 ⊢ ((𝐴 ∩ (𝐵 ∖ 𝐶)) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶))) | |
14 | 11, 12, 13 | 3bitr4i 303 | 1 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 |
This theorem is referenced by: disjdif 4405 inf3lem3 9388 ssfin4 10066 isnrm2 22509 1stccnp 22613 llycmpkgen2 22701 ufileu 23070 fclscf 23176 flimfnfcls 23179 inindif 30863 opnbnd 34514 diophrw 40581 setindtr 40846 |
Copyright terms: Public domain | W3C validator |