MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inssdif0 Structured version   Visualization version   GIF version

Theorem inssdif0 4303
Description: Intersection, subclass, and difference relationship. (Contributed by NM, 27-Oct-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
Assertion
Ref Expression
inssdif0 ((𝐴𝐵) ⊆ 𝐶 ↔ (𝐴 ∩ (𝐵𝐶)) = ∅)

Proof of Theorem inssdif0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3903 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
21imbi1i 350 . . . . 5 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) → 𝑥𝐶))
3 iman 402 . . . . 5 (((𝑥𝐴𝑥𝐵) → 𝑥𝐶) ↔ ¬ ((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶))
42, 3bitri 274 . . . 4 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ¬ ((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶))
5 eldif 3897 . . . . . 6 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐶))
65anbi2i 623 . . . . 5 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
7 elin 3903 . . . . 5 (𝑥 ∈ (𝐴 ∩ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
8 anass 469 . . . . 5 (((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
96, 7, 83bitr4ri 304 . . . 4 (((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
104, 9xchbinx 334 . . 3 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ¬ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
1110albii 1822 . 2 (∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
12 dfss2 3907 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
13 eq0 4277 . 2 ((𝐴 ∩ (𝐵𝐶)) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
1411, 12, 133bitr4i 303 1 ((𝐴𝐵) ⊆ 𝐶 ↔ (𝐴 ∩ (𝐵𝐶)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wcel 2106  cdif 3884  cin 3886  wss 3887  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257
This theorem is referenced by:  disjdif  4405  inf3lem3  9388  ssfin4  10066  isnrm2  22509  1stccnp  22613  llycmpkgen2  22701  ufileu  23070  fclscf  23176  flimfnfcls  23179  inindif  30863  opnbnd  34514  diophrw  40581  setindtr  40846
  Copyright terms: Public domain W3C validator