| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inssdif0 | Structured version Visualization version GIF version | ||
| Description: Intersection, subclass, and difference relationship. (Contributed by NM, 27-Oct-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.) |
| Ref | Expression |
|---|---|
| inssdif0 | ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3967 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | imbi1i 349 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶)) |
| 3 | iman 401 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶) ↔ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 4 | 2, 3 | bitri 275 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶) ↔ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝐶)) |
| 5 | eldif 3961 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 6 | 5 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
| 7 | elin 3967 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∖ 𝐶))) | |
| 8 | anass 468 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) | |
| 9 | 6, 7, 8 | 3bitr4ri 304 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶))) |
| 10 | 4, 9 | xchbinx 334 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶) ↔ ¬ 𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶))) |
| 11 | 10 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶))) |
| 12 | df-ss 3968 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶)) | |
| 13 | eq0 4350 | . 2 ⊢ ((𝐴 ∩ (𝐵 ∖ 𝐶)) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶))) | |
| 14 | 11, 12, 13 | 3bitr4i 303 | 1 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ∖ cdif 3948 ∩ cin 3950 ⊆ wss 3951 ∅c0 4333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-dif 3954 df-in 3958 df-ss 3968 df-nul 4334 |
| This theorem is referenced by: inindif 4375 disjdif 4472 inf3lem3 9670 ssfin4 10350 isnrm2 23366 1stccnp 23470 llycmpkgen2 23558 ufileu 23927 fclscf 24033 flimfnfcls 24036 opnbnd 36326 diophrw 42770 setindtr 43036 |
| Copyright terms: Public domain | W3C validator |