Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difres Structured version   Visualization version   GIF version

Theorem difres 30461
 Description: Case when class difference in unaffected by restriction. (Contributed by Thierry Arnoux, 1-Jan-2020.)
Assertion
Ref Expression
difres (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶𝐵)) = (𝐴𝐶))

Proof of Theorem difres
StepHypRef Expression
1 df-res 5536 . . 3 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
21difeq2i 4025 . 2 (𝐴 ∖ (𝐶𝐵)) = (𝐴 ∖ (𝐶 ∩ (𝐵 × V)))
3 difindi 4186 . . . 4 (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = ((𝐴𝐶) ∪ (𝐴 ∖ (𝐵 × V)))
4 ssdif 4045 . . . . . . 7 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) ⊆ ((𝐵 × V) ∖ (𝐵 × V)))
5 difid 4269 . . . . . . 7 ((𝐵 × V) ∖ (𝐵 × V)) = ∅
64, 5sseqtrdi 3942 . . . . . 6 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) ⊆ ∅)
7 ss0 4294 . . . . . 6 ((𝐴 ∖ (𝐵 × V)) ⊆ ∅ → (𝐴 ∖ (𝐵 × V)) = ∅)
86, 7syl 17 . . . . 5 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) = ∅)
98uneq2d 4068 . . . 4 (𝐴 ⊆ (𝐵 × V) → ((𝐴𝐶) ∪ (𝐴 ∖ (𝐵 × V))) = ((𝐴𝐶) ∪ ∅))
103, 9syl5eq 2805 . . 3 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = ((𝐴𝐶) ∪ ∅))
11 un0 4286 . . 3 ((𝐴𝐶) ∪ ∅) = (𝐴𝐶)
1210, 11eqtrdi 2809 . 2 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = (𝐴𝐶))
132, 12syl5eq 2805 1 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶𝐵)) = (𝐴𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538  Vcvv 3409   ∖ cdif 3855   ∪ cun 3856   ∩ cin 3857   ⊆ wss 3858  ∅c0 4225   × cxp 5522   ↾ cres 5526 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-rab 3079  df-v 3411  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-res 5536 This theorem is referenced by:  qtophaus  31307
 Copyright terms: Public domain W3C validator