| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > difres | Structured version Visualization version GIF version | ||
| Description: Case when class difference in unaffected by restriction. (Contributed by Thierry Arnoux, 1-Jan-2020.) |
| Ref | Expression |
|---|---|
| difres | ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ↾ 𝐵)) = (𝐴 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5623 | . . 3 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
| 2 | 1 | difeq2i 4068 | . 2 ⊢ (𝐴 ∖ (𝐶 ↾ 𝐵)) = (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) |
| 3 | difindi 4237 | . . . 4 ⊢ (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = ((𝐴 ∖ 𝐶) ∪ (𝐴 ∖ (𝐵 × V))) | |
| 4 | ssdif 4089 | . . . . . . 7 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) ⊆ ((𝐵 × V) ∖ (𝐵 × V))) | |
| 5 | difid 4321 | . . . . . . 7 ⊢ ((𝐵 × V) ∖ (𝐵 × V)) = ∅ | |
| 6 | 4, 5 | sseqtrdi 3970 | . . . . . 6 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) ⊆ ∅) |
| 7 | ss0 4347 | . . . . . 6 ⊢ ((𝐴 ∖ (𝐵 × V)) ⊆ ∅ → (𝐴 ∖ (𝐵 × V)) = ∅) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) = ∅) |
| 9 | 8 | uneq2d 4113 | . . . 4 ⊢ (𝐴 ⊆ (𝐵 × V) → ((𝐴 ∖ 𝐶) ∪ (𝐴 ∖ (𝐵 × V))) = ((𝐴 ∖ 𝐶) ∪ ∅)) |
| 10 | 3, 9 | eqtrid 2778 | . . 3 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = ((𝐴 ∖ 𝐶) ∪ ∅)) |
| 11 | un0 4339 | . . 3 ⊢ ((𝐴 ∖ 𝐶) ∪ ∅) = (𝐴 ∖ 𝐶) | |
| 12 | 10, 11 | eqtrdi 2782 | . 2 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = (𝐴 ∖ 𝐶)) |
| 13 | 2, 12 | eqtrid 2778 | 1 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ↾ 𝐵)) = (𝐴 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Vcvv 3436 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 ⊆ wss 3897 ∅c0 4278 × cxp 5609 ↾ cres 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-res 5623 |
| This theorem is referenced by: qtophaus 33841 |
| Copyright terms: Public domain | W3C validator |