Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difres Structured version   Visualization version   GIF version

Theorem difres 32502
Description: Case when class difference in unaffected by restriction. (Contributed by Thierry Arnoux, 1-Jan-2020.)
Assertion
Ref Expression
difres (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶𝐵)) = (𝐴𝐶))

Proof of Theorem difres
StepHypRef Expression
1 df-res 5643 . . 3 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
21difeq2i 4082 . 2 (𝐴 ∖ (𝐶𝐵)) = (𝐴 ∖ (𝐶 ∩ (𝐵 × V)))
3 difindi 4251 . . . 4 (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = ((𝐴𝐶) ∪ (𝐴 ∖ (𝐵 × V)))
4 ssdif 4103 . . . . . . 7 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) ⊆ ((𝐵 × V) ∖ (𝐵 × V)))
5 difid 4335 . . . . . . 7 ((𝐵 × V) ∖ (𝐵 × V)) = ∅
64, 5sseqtrdi 3984 . . . . . 6 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) ⊆ ∅)
7 ss0 4361 . . . . . 6 ((𝐴 ∖ (𝐵 × V)) ⊆ ∅ → (𝐴 ∖ (𝐵 × V)) = ∅)
86, 7syl 17 . . . . 5 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) = ∅)
98uneq2d 4127 . . . 4 (𝐴 ⊆ (𝐵 × V) → ((𝐴𝐶) ∪ (𝐴 ∖ (𝐵 × V))) = ((𝐴𝐶) ∪ ∅))
103, 9eqtrid 2776 . . 3 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = ((𝐴𝐶) ∪ ∅))
11 un0 4353 . . 3 ((𝐴𝐶) ∪ ∅) = (𝐴𝐶)
1210, 11eqtrdi 2780 . 2 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = (𝐴𝐶))
132, 12eqtrid 2776 1 (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶𝐵)) = (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3444  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292   × cxp 5629  cres 5633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-res 5643
This theorem is referenced by:  qtophaus  33799
  Copyright terms: Public domain W3C validator