![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > difres | Structured version Visualization version GIF version |
Description: Case when class difference in unaffected by restriction. (Contributed by Thierry Arnoux, 1-Jan-2020.) |
Ref | Expression |
---|---|
difres | ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ↾ 𝐵)) = (𝐴 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5712 | . . 3 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
2 | 1 | difeq2i 4146 | . 2 ⊢ (𝐴 ∖ (𝐶 ↾ 𝐵)) = (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) |
3 | difindi 4311 | . . . 4 ⊢ (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = ((𝐴 ∖ 𝐶) ∪ (𝐴 ∖ (𝐵 × V))) | |
4 | ssdif 4167 | . . . . . . 7 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) ⊆ ((𝐵 × V) ∖ (𝐵 × V))) | |
5 | difid 4398 | . . . . . . 7 ⊢ ((𝐵 × V) ∖ (𝐵 × V)) = ∅ | |
6 | 4, 5 | sseqtrdi 4059 | . . . . . 6 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) ⊆ ∅) |
7 | ss0 4425 | . . . . . 6 ⊢ ((𝐴 ∖ (𝐵 × V)) ⊆ ∅ → (𝐴 ∖ (𝐵 × V)) = ∅) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) = ∅) |
9 | 8 | uneq2d 4191 | . . . 4 ⊢ (𝐴 ⊆ (𝐵 × V) → ((𝐴 ∖ 𝐶) ∪ (𝐴 ∖ (𝐵 × V))) = ((𝐴 ∖ 𝐶) ∪ ∅)) |
10 | 3, 9 | eqtrid 2792 | . . 3 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = ((𝐴 ∖ 𝐶) ∪ ∅)) |
11 | un0 4417 | . . 3 ⊢ ((𝐴 ∖ 𝐶) ∪ ∅) = (𝐴 ∖ 𝐶) | |
12 | 10, 11 | eqtrdi 2796 | . 2 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = (𝐴 ∖ 𝐶)) |
13 | 2, 12 | eqtrid 2792 | 1 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ↾ 𝐵)) = (𝐴 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Vcvv 3488 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 × cxp 5698 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-res 5712 |
This theorem is referenced by: qtophaus 33782 |
Copyright terms: Public domain | W3C validator |