Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > difres | Structured version Visualization version GIF version |
Description: Case when class difference in unaffected by restriction. (Contributed by Thierry Arnoux, 1-Jan-2020.) |
Ref | Expression |
---|---|
difres | ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ↾ 𝐵)) = (𝐴 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5592 | . . 3 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
2 | 1 | difeq2i 4050 | . 2 ⊢ (𝐴 ∖ (𝐶 ↾ 𝐵)) = (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) |
3 | difindi 4212 | . . . 4 ⊢ (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = ((𝐴 ∖ 𝐶) ∪ (𝐴 ∖ (𝐵 × V))) | |
4 | ssdif 4070 | . . . . . . 7 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) ⊆ ((𝐵 × V) ∖ (𝐵 × V))) | |
5 | difid 4301 | . . . . . . 7 ⊢ ((𝐵 × V) ∖ (𝐵 × V)) = ∅ | |
6 | 4, 5 | sseqtrdi 3967 | . . . . . 6 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) ⊆ ∅) |
7 | ss0 4329 | . . . . . 6 ⊢ ((𝐴 ∖ (𝐵 × V)) ⊆ ∅ → (𝐴 ∖ (𝐵 × V)) = ∅) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐵 × V)) = ∅) |
9 | 8 | uneq2d 4093 | . . . 4 ⊢ (𝐴 ⊆ (𝐵 × V) → ((𝐴 ∖ 𝐶) ∪ (𝐴 ∖ (𝐵 × V))) = ((𝐴 ∖ 𝐶) ∪ ∅)) |
10 | 3, 9 | syl5eq 2791 | . . 3 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = ((𝐴 ∖ 𝐶) ∪ ∅)) |
11 | un0 4321 | . . 3 ⊢ ((𝐴 ∖ 𝐶) ∪ ∅) = (𝐴 ∖ 𝐶) | |
12 | 10, 11 | eqtrdi 2795 | . 2 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ∩ (𝐵 × V))) = (𝐴 ∖ 𝐶)) |
13 | 2, 12 | syl5eq 2791 | 1 ⊢ (𝐴 ⊆ (𝐵 × V) → (𝐴 ∖ (𝐶 ↾ 𝐵)) = (𝐴 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-res 5592 |
This theorem is referenced by: qtophaus 31688 |
Copyright terms: Public domain | W3C validator |