| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdif | Structured version Visualization version GIF version | ||
| Description: Difference law for subsets. (Contributed by NM, 28-May-1998.) |
| Ref | Expression |
|---|---|
| ssdif | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3943 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
| 3 | eldif 3927 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 4 | eldif 3927 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐶) → 𝑥 ∈ (𝐵 ∖ 𝐶))) |
| 6 | 5 | ssrdv 3955 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3914 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-ss 3934 |
| This theorem is referenced by: ssdifd 4111 pssnn 9138 php 9177 fin1a2lem13 10372 axcclem 10417 isercolllem3 15640 mvdco 19382 dprdres 19967 dpjidcl 19997 ablfac1eulem 20011 cntzsdrg 20718 lspsnat 21062 lbsextlem2 21076 lbsextlem3 21077 cnsubdrglem 21342 mplmonmul 21950 clsconn 23324 2ndcdisj2 23351 kqdisj 23626 nulmbl2 25444 i1f1 25598 itg11 25599 itg1climres 25622 limcresi 25793 dvreslem 25817 dvres2lem 25818 dvaddbr 25847 dvmulbr 25848 dvmulbrOLD 25849 lhop 25928 elqaa 26237 difres 32536 imadifxp 32537 xrge00 32960 elrspunidl 33406 eulerpartlemmf 34373 eulerpartlemgf 34377 bj-2upln1upl 37019 pibt2 37412 mblfinlem3 37660 mblfinlem4 37661 ismblfin 37662 cnambfre 37669 divrngidl 38029 dvrelog2 42059 dvrelog3 42060 readvrec2 42356 readvrec 42357 dffltz 42629 cantnftermord 43316 omabs2 43328 radcnvrat 44310 fourierdlem62 46173 |
| Copyright terms: Public domain | W3C validator |