| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdif | Structured version Visualization version GIF version | ||
| Description: Difference law for subsets. (Contributed by NM, 28-May-1998.) |
| Ref | Expression |
|---|---|
| ssdif | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3940 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
| 3 | eldif 3924 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 4 | eldif 3924 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐶) → 𝑥 ∈ (𝐵 ∖ 𝐶))) |
| 6 | 5 | ssrdv 3952 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3911 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-ss 3931 |
| This theorem is referenced by: ssdifd 4108 pssnn 9132 php 9171 fin1a2lem13 10365 axcclem 10410 isercolllem3 15633 mvdco 19375 dprdres 19960 dpjidcl 19990 ablfac1eulem 20004 cntzsdrg 20711 lspsnat 21055 lbsextlem2 21069 lbsextlem3 21070 cnsubdrglem 21335 mplmonmul 21943 clsconn 23317 2ndcdisj2 23344 kqdisj 23619 nulmbl2 25437 i1f1 25591 itg11 25592 itg1climres 25615 limcresi 25786 dvreslem 25810 dvres2lem 25811 dvaddbr 25840 dvmulbr 25841 dvmulbrOLD 25842 lhop 25921 elqaa 26230 difres 32529 imadifxp 32530 xrge00 32953 elrspunidl 33399 eulerpartlemmf 34366 eulerpartlemgf 34370 bj-2upln1upl 37012 pibt2 37405 mblfinlem3 37653 mblfinlem4 37654 ismblfin 37655 cnambfre 37662 divrngidl 38022 dvrelog2 42052 dvrelog3 42053 readvrec2 42349 readvrec 42350 dffltz 42622 cantnftermord 43309 omabs2 43321 radcnvrat 44303 fourierdlem62 46166 |
| Copyright terms: Public domain | W3C validator |