| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdif | Structured version Visualization version GIF version | ||
| Description: Difference law for subsets. (Contributed by NM, 28-May-1998.) |
| Ref | Expression |
|---|---|
| ssdif | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3952 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
| 3 | eldif 3936 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 4 | eldif 3936 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐶) → 𝑥 ∈ (𝐵 ∖ 𝐶))) |
| 6 | 5 | ssrdv 3964 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ∖ cdif 3923 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-ss 3943 |
| This theorem is referenced by: ssdifd 4120 pssnn 9182 php 9221 phpOLD 9231 fin1a2lem13 10426 axcclem 10471 isercolllem3 15683 mvdco 19426 dprdres 20011 dpjidcl 20041 ablfac1eulem 20055 cntzsdrg 20762 lspsnat 21106 lbsextlem2 21120 lbsextlem3 21121 cnsubdrglem 21386 mplmonmul 21994 clsconn 23368 2ndcdisj2 23395 kqdisj 23670 nulmbl2 25489 i1f1 25643 itg11 25644 itg1climres 25667 limcresi 25838 dvreslem 25862 dvres2lem 25863 dvaddbr 25892 dvmulbr 25893 dvmulbrOLD 25894 lhop 25973 elqaa 26282 difres 32581 imadifxp 32582 xrge00 33007 elrspunidl 33443 eulerpartlemmf 34407 eulerpartlemgf 34411 bj-2upln1upl 37042 pibt2 37435 mblfinlem3 37683 mblfinlem4 37684 ismblfin 37685 cnambfre 37692 divrngidl 38052 dvrelog2 42077 dvrelog3 42078 readvrec2 42404 readvrec 42405 dffltz 42657 cantnftermord 43344 omabs2 43356 radcnvrat 44338 fourierdlem62 46197 |
| Copyright terms: Public domain | W3C validator |