![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdif | Structured version Visualization version GIF version |
Description: Difference law for subsets. (Contributed by NM, 28-May-1998.) |
Ref | Expression |
---|---|
ssdif | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 4002 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 610 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
3 | eldif 3986 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)) | |
4 | eldif 3986 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐶) → 𝑥 ∈ (𝐵 ∖ 𝐶))) |
6 | 5 | ssrdv 4014 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ∖ cdif 3973 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-ss 3993 |
This theorem is referenced by: ssdifd 4168 pssnn 9234 php 9273 phpOLD 9285 fin1a2lem13 10481 axcclem 10526 isercolllem3 15715 mvdco 19487 dprdres 20072 dpjidcl 20102 ablfac1eulem 20116 cntzsdrg 20825 lspsnat 21170 lbsextlem2 21184 lbsextlem3 21185 cnsubdrglem 21459 mplmonmul 22077 clsconn 23459 2ndcdisj2 23486 kqdisj 23761 nulmbl2 25590 i1f1 25744 itg11 25745 itg1climres 25769 limcresi 25940 dvreslem 25964 dvres2lem 25965 dvaddbr 25994 dvmulbr 25995 dvmulbrOLD 25996 lhop 26075 elqaa 26382 difres 32622 imadifxp 32623 xrge00 32998 elrspunidl 33421 eulerpartlemmf 34340 eulerpartlemgf 34344 bj-2upln1upl 36990 pibt2 37383 mblfinlem3 37619 mblfinlem4 37620 ismblfin 37621 cnambfre 37628 divrngidl 37988 dvrelog2 42021 dvrelog3 42022 dffltz 42589 cantnftermord 43282 omabs2 43294 radcnvrat 44283 fourierdlem62 46089 |
Copyright terms: Public domain | W3C validator |