![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdif | Structured version Visualization version GIF version |
Description: Difference law for subsets. (Contributed by NM, 28-May-1998.) |
Ref | Expression |
---|---|
ssdif | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3988 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
3 | eldif 3972 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)) | |
4 | eldif 3972 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐶) → 𝑥 ∈ (𝐵 ∖ 𝐶))) |
6 | 5 | ssrdv 4000 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2105 ∖ cdif 3959 ⊆ wss 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-dif 3965 df-ss 3979 |
This theorem is referenced by: ssdifd 4154 pssnn 9206 php 9244 phpOLD 9256 fin1a2lem13 10449 axcclem 10494 isercolllem3 15699 mvdco 19477 dprdres 20062 dpjidcl 20092 ablfac1eulem 20106 cntzsdrg 20819 lspsnat 21164 lbsextlem2 21178 lbsextlem3 21179 cnsubdrglem 21453 mplmonmul 22071 clsconn 23453 2ndcdisj2 23480 kqdisj 23755 nulmbl2 25584 i1f1 25738 itg11 25739 itg1climres 25763 limcresi 25934 dvreslem 25958 dvres2lem 25959 dvaddbr 25988 dvmulbr 25989 dvmulbrOLD 25990 lhop 26069 elqaa 26378 difres 32619 imadifxp 32620 xrge00 32999 elrspunidl 33435 eulerpartlemmf 34356 eulerpartlemgf 34360 bj-2upln1upl 37006 pibt2 37399 mblfinlem3 37645 mblfinlem4 37646 ismblfin 37647 cnambfre 37654 divrngidl 38014 dvrelog2 42045 dvrelog3 42046 readvrec2 42369 readvrec 42370 dffltz 42620 cantnftermord 43309 omabs2 43321 radcnvrat 44309 fourierdlem62 46123 |
Copyright terms: Public domain | W3C validator |