Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssdif | Structured version Visualization version GIF version |
Description: Difference law for subsets. (Contributed by NM, 28-May-1998.) |
Ref | Expression |
---|---|
ssdif | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3910 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 610 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
3 | eldif 3893 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)) | |
4 | eldif 3893 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3imtr4g 295 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐶) → 𝑥 ∈ (𝐵 ∖ 𝐶))) |
6 | 5 | ssrdv 3923 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 |
This theorem is referenced by: ssdifd 4071 php 8897 pssnn 8913 pssnnOLD 8969 fin1a2lem13 10099 axcclem 10144 isercolllem3 15306 mvdco 18968 dprdres 19546 dpjidcl 19576 ablfac1eulem 19590 cntzsdrg 19985 lspsnat 20322 lbsextlem2 20336 lbsextlem3 20337 cnsubdrglem 20561 mplmonmul 21147 clsconn 22489 2ndcdisj2 22516 kqdisj 22791 nulmbl2 24605 i1f1 24759 itg11 24760 itg1climres 24784 limcresi 24954 dvreslem 24978 dvres2lem 24979 dvaddbr 25007 dvmulbr 25008 lhop 25085 elqaa 25387 difres 30840 imadifxp 30841 xrge00 31197 elrspunidl 31508 eulerpartlemmf 32242 eulerpartlemgf 32246 bj-2upln1upl 35141 pibt2 35515 mblfinlem3 35743 mblfinlem4 35744 ismblfin 35745 cnambfre 35752 divrngidl 36113 dvrelog2 40000 dvrelog3 40001 dffltz 40387 radcnvrat 41821 fourierdlem62 43599 |
Copyright terms: Public domain | W3C validator |