| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdif | Structured version Visualization version GIF version | ||
| Description: Difference law for subsets. (Contributed by NM, 28-May-1998.) |
| Ref | Expression |
|---|---|
| ssdif | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3923 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
| 3 | eldif 3907 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 4 | eldif 3907 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐶) → 𝑥 ∈ (𝐵 ∖ 𝐶))) |
| 6 | 5 | ssrdv 3935 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 ∖ cdif 3894 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-ss 3914 |
| This theorem is referenced by: ssdifd 4090 pssnn 9073 php 9111 fin1a2lem13 10298 axcclem 10343 isercolllem3 15569 mvdco 19352 dprdres 19937 dpjidcl 19967 ablfac1eulem 19981 cntzsdrg 20712 lspsnat 21077 lbsextlem2 21091 lbsextlem3 21092 cnsubdrglem 21350 mplmonmul 21966 clsconn 23340 2ndcdisj2 23367 kqdisj 23642 nulmbl2 25459 i1f1 25613 itg11 25614 itg1climres 25637 limcresi 25808 dvreslem 25832 dvres2lem 25833 dvaddbr 25862 dvmulbr 25863 dvmulbrOLD 25864 lhop 25943 elqaa 26252 difres 32572 imadifxp 32573 xrge00 32987 elrspunidl 33385 eulerpartlemmf 34380 eulerpartlemgf 34384 bj-2upln1upl 37058 pibt2 37451 mblfinlem3 37699 mblfinlem4 37700 ismblfin 37701 cnambfre 37708 divrngidl 38068 dvrelog2 42097 dvrelog3 42098 readvrec2 42394 readvrec 42395 dffltz 42667 cantnftermord 43353 omabs2 43365 radcnvrat 44347 fourierdlem62 46206 |
| Copyright terms: Public domain | W3C validator |