| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdif | Structured version Visualization version GIF version | ||
| Description: Difference law for subsets. (Contributed by NM, 28-May-1998.) |
| Ref | Expression |
|---|---|
| ssdif | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3924 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
| 3 | eldif 3908 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 4 | eldif 3908 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐶) → 𝑥 ∈ (𝐵 ∖ 𝐶))) |
| 6 | 5 | ssrdv 3936 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2113 ∖ cdif 3895 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-ss 3915 |
| This theorem is referenced by: ssdifd 4094 pssnn 9089 php 9127 fin1a2lem13 10314 axcclem 10359 isercolllem3 15581 mvdco 19365 dprdres 19950 dpjidcl 19980 ablfac1eulem 19994 cntzsdrg 20726 lspsnat 21091 lbsextlem2 21105 lbsextlem3 21106 cnsubdrglem 21364 mplmonmul 21982 clsconn 23365 2ndcdisj2 23392 kqdisj 23667 nulmbl2 25484 i1f1 25638 itg11 25639 itg1climres 25662 limcresi 25833 dvreslem 25857 dvres2lem 25858 dvaddbr 25887 dvmulbr 25888 dvmulbrOLD 25889 lhop 25968 elqaa 26277 difres 32601 imadifxp 32602 xrge00 33024 elrspunidl 33437 eulerpartlemmf 34460 eulerpartlemgf 34464 bj-2upln1upl 37141 pibt2 37534 mblfinlem3 37772 mblfinlem4 37773 ismblfin 37774 cnambfre 37781 divrngidl 38141 dvrelog2 42230 dvrelog3 42231 readvrec2 42531 readvrec 42532 dffltz 42792 cantnftermord 43477 omabs2 43489 radcnvrat 44471 fourierdlem62 46328 |
| Copyright terms: Public domain | W3C validator |