| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdif | Structured version Visualization version GIF version | ||
| Description: Difference law for subsets. (Contributed by NM, 28-May-1998.) |
| Ref | Expression |
|---|---|
| ssdif | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3937 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
| 3 | eldif 3921 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 4 | eldif 3921 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐶) → 𝑥 ∈ (𝐵 ∖ 𝐶))) |
| 6 | 5 | ssrdv 3949 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3908 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-ss 3928 |
| This theorem is referenced by: ssdifd 4104 pssnn 9109 php 9148 fin1a2lem13 10341 axcclem 10386 isercolllem3 15609 mvdco 19351 dprdres 19936 dpjidcl 19966 ablfac1eulem 19980 cntzsdrg 20687 lspsnat 21031 lbsextlem2 21045 lbsextlem3 21046 cnsubdrglem 21311 mplmonmul 21919 clsconn 23293 2ndcdisj2 23320 kqdisj 23595 nulmbl2 25413 i1f1 25567 itg11 25568 itg1climres 25591 limcresi 25762 dvreslem 25786 dvres2lem 25787 dvaddbr 25816 dvmulbr 25817 dvmulbrOLD 25818 lhop 25897 elqaa 26206 difres 32502 imadifxp 32503 xrge00 32926 elrspunidl 33372 eulerpartlemmf 34339 eulerpartlemgf 34343 bj-2upln1upl 36985 pibt2 37378 mblfinlem3 37626 mblfinlem4 37627 ismblfin 37628 cnambfre 37635 divrngidl 37995 dvrelog2 42025 dvrelog3 42026 readvrec2 42322 readvrec 42323 dffltz 42595 cantnftermord 43282 omabs2 43294 radcnvrat 44276 fourierdlem62 46139 |
| Copyright terms: Public domain | W3C validator |