![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdif | Structured version Visualization version GIF version |
Description: Difference law for subsets. (Contributed by NM, 28-May-1998.) |
Ref | Expression |
---|---|
ssdif | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3976 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 612 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
3 | eldif 3959 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)) | |
4 | eldif 3959 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐶) → 𝑥 ∈ (𝐵 ∖ 𝐶))) |
6 | 5 | ssrdv 3989 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∈ wcel 2107 ∖ cdif 3946 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-dif 3952 df-in 3956 df-ss 3966 |
This theorem is referenced by: ssdifd 4141 pssnn 9168 php 9210 phpOLD 9222 pssnnOLD 9265 fin1a2lem13 10407 axcclem 10452 isercolllem3 15613 mvdco 19313 dprdres 19898 dpjidcl 19928 ablfac1eulem 19942 cntzsdrg 20418 lspsnat 20758 lbsextlem2 20772 lbsextlem3 20773 cnsubdrglem 20996 mplmonmul 21591 clsconn 22934 2ndcdisj2 22961 kqdisj 23236 nulmbl2 25053 i1f1 25207 itg11 25208 itg1climres 25232 limcresi 25402 dvreslem 25426 dvres2lem 25427 dvaddbr 25455 dvmulbr 25456 lhop 25533 elqaa 25835 difres 31831 imadifxp 31832 xrge00 32187 elrspunidl 32546 eulerpartlemmf 33374 eulerpartlemgf 33378 gg-dvmulbr 35175 bj-2upln1upl 35905 pibt2 36298 mblfinlem3 36527 mblfinlem4 36528 ismblfin 36529 cnambfre 36536 divrngidl 36896 dvrelog2 40929 dvrelog3 40930 dffltz 41376 cantnftermord 42070 omabs2 42082 radcnvrat 43073 fourierdlem62 44884 |
Copyright terms: Public domain | W3C validator |