Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssdif | Structured version Visualization version GIF version |
Description: Difference law for subsets. (Contributed by NM, 28-May-1998.) |
Ref | Expression |
---|---|
ssdif | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3919 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
3 | eldif 3902 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)) | |
4 | eldif 3902 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐶) → 𝑥 ∈ (𝐵 ∖ 𝐶))) |
6 | 5 | ssrdv 3932 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∈ wcel 2110 ∖ cdif 3889 ⊆ wss 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-dif 3895 df-in 3899 df-ss 3909 |
This theorem is referenced by: ssdifd 4080 pssnn 8931 php 8972 phpOLD 8985 pssnnOLD 9016 fin1a2lem13 10167 axcclem 10212 isercolllem3 15374 mvdco 19049 dprdres 19627 dpjidcl 19657 ablfac1eulem 19671 cntzsdrg 20066 lspsnat 20403 lbsextlem2 20417 lbsextlem3 20418 cnsubdrglem 20645 mplmonmul 21233 clsconn 22577 2ndcdisj2 22604 kqdisj 22879 nulmbl2 24696 i1f1 24850 itg11 24851 itg1climres 24875 limcresi 25045 dvreslem 25069 dvres2lem 25070 dvaddbr 25098 dvmulbr 25099 lhop 25176 elqaa 25478 difres 30933 imadifxp 30934 xrge00 31289 elrspunidl 31600 eulerpartlemmf 32336 eulerpartlemgf 32340 bj-2upln1upl 35208 pibt2 35582 mblfinlem3 35810 mblfinlem4 35811 ismblfin 35812 cnambfre 35819 divrngidl 36180 dvrelog2 40067 dvrelog3 40068 dffltz 40466 radcnvrat 41900 fourierdlem62 43678 |
Copyright terms: Public domain | W3C validator |