Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssdif | Structured version Visualization version GIF version |
Description: Difference law for subsets. (Contributed by NM, 28-May-1998.) |
Ref | Expression |
---|---|
ssdif | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3914 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
3 | eldif 3897 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)) | |
4 | eldif 3897 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐶) → 𝑥 ∈ (𝐵 ∖ 𝐶))) |
6 | 5 | ssrdv 3927 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∈ wcel 2106 ∖ cdif 3884 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 |
This theorem is referenced by: ssdifd 4075 pssnn 8951 php 8993 phpOLD 9005 pssnnOLD 9040 fin1a2lem13 10168 axcclem 10213 isercolllem3 15378 mvdco 19053 dprdres 19631 dpjidcl 19661 ablfac1eulem 19675 cntzsdrg 20070 lspsnat 20407 lbsextlem2 20421 lbsextlem3 20422 cnsubdrglem 20649 mplmonmul 21237 clsconn 22581 2ndcdisj2 22608 kqdisj 22883 nulmbl2 24700 i1f1 24854 itg11 24855 itg1climres 24879 limcresi 25049 dvreslem 25073 dvres2lem 25074 dvaddbr 25102 dvmulbr 25103 lhop 25180 elqaa 25482 difres 30939 imadifxp 30940 xrge00 31295 elrspunidl 31606 eulerpartlemmf 32342 eulerpartlemgf 32346 bj-2upln1upl 35214 pibt2 35588 mblfinlem3 35816 mblfinlem4 35817 ismblfin 35818 cnambfre 35825 divrngidl 36186 dvrelog2 40072 dvrelog3 40073 dffltz 40471 radcnvrat 41932 fourierdlem62 43709 |
Copyright terms: Public domain | W3C validator |