| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdif | Structured version Visualization version GIF version | ||
| Description: Difference law for subsets. (Contributed by NM, 28-May-1998.) |
| Ref | Expression |
|---|---|
| ssdif | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3931 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
| 3 | eldif 3915 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 4 | eldif 3915 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐶) → 𝑥 ∈ (𝐵 ∖ 𝐶))) |
| 6 | 5 | ssrdv 3943 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3902 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-dif 3908 df-ss 3922 |
| This theorem is referenced by: ssdifd 4098 pssnn 9092 php 9131 fin1a2lem13 10325 axcclem 10370 isercolllem3 15592 mvdco 19342 dprdres 19927 dpjidcl 19957 ablfac1eulem 19971 cntzsdrg 20705 lspsnat 21070 lbsextlem2 21084 lbsextlem3 21085 cnsubdrglem 21343 mplmonmul 21959 clsconn 23333 2ndcdisj2 23360 kqdisj 23635 nulmbl2 25453 i1f1 25607 itg11 25608 itg1climres 25631 limcresi 25802 dvreslem 25826 dvres2lem 25827 dvaddbr 25856 dvmulbr 25857 dvmulbrOLD 25858 lhop 25937 elqaa 26246 difres 32562 imadifxp 32563 xrge00 32981 elrspunidl 33378 eulerpartlemmf 34345 eulerpartlemgf 34349 bj-2upln1upl 37000 pibt2 37393 mblfinlem3 37641 mblfinlem4 37642 ismblfin 37643 cnambfre 37650 divrngidl 38010 dvrelog2 42040 dvrelog3 42041 readvrec2 42337 readvrec 42338 dffltz 42610 cantnftermord 43296 omabs2 43308 radcnvrat 44290 fourierdlem62 46153 |
| Copyright terms: Public domain | W3C validator |