Proof of Theorem imadifxp
Step | Hyp | Ref
| Expression |
1 | | ima0 5974 |
. . . 4
⊢ ((𝑅 ∖ (𝐴 × 𝐵)) “ ∅) =
∅ |
2 | | imaeq2 5954 |
. . . 4
⊢ (𝐶 = ∅ → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅 ∖ (𝐴 × 𝐵)) “ ∅)) |
3 | | imaeq2 5954 |
. . . . . . 7
⊢ (𝐶 = ∅ → (𝑅 “ 𝐶) = (𝑅 “ ∅)) |
4 | | ima0 5974 |
. . . . . . 7
⊢ (𝑅 “ ∅) =
∅ |
5 | 3, 4 | eqtrdi 2795 |
. . . . . 6
⊢ (𝐶 = ∅ → (𝑅 “ 𝐶) = ∅) |
6 | 5 | difeq1d 4052 |
. . . . 5
⊢ (𝐶 = ∅ → ((𝑅 “ 𝐶) ∖ 𝐵) = (∅ ∖ 𝐵)) |
7 | | 0dif 4332 |
. . . . 5
⊢ (∅
∖ 𝐵) =
∅ |
8 | 6, 7 | eqtrdi 2795 |
. . . 4
⊢ (𝐶 = ∅ → ((𝑅 “ 𝐶) ∖ 𝐵) = ∅) |
9 | 1, 2, 8 | 3eqtr4a 2805 |
. . 3
⊢ (𝐶 = ∅ → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅 “ 𝐶) ∖ 𝐵)) |
10 | 9 | adantl 481 |
. 2
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐶 = ∅) → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅 “ 𝐶) ∖ 𝐵)) |
11 | | uncom 4083 |
. . . . 5
⊢ (∅
∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)) = (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∪ ∅) |
12 | | un0 4321 |
. . . . 5
⊢ (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∪ ∅) = ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) |
13 | 11, 12 | eqtr2i 2767 |
. . . 4
⊢ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = (∅ ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)) |
14 | | inundif 4409 |
. . . . . . . . 9
⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ∪ (𝑅 ∖ (𝐴 × 𝐵))) = 𝑅 |
15 | 14 | imaeq1i 5955 |
. . . . . . . 8
⊢ (((𝑅 ∩ (𝐴 × 𝐵)) ∪ (𝑅 ∖ (𝐴 × 𝐵))) “ 𝐶) = (𝑅 “ 𝐶) |
16 | | imaundir 6043 |
. . . . . . . 8
⊢ (((𝑅 ∩ (𝐴 × 𝐵)) ∪ (𝑅 ∖ (𝐴 × 𝐵))) “ 𝐶) = (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)) |
17 | 15, 16 | eqtr3i 2768 |
. . . . . . 7
⊢ (𝑅 “ 𝐶) = (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)) |
18 | 17 | difeq1i 4049 |
. . . . . 6
⊢ ((𝑅 “ 𝐶) ∖ 𝐵) = ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)) ∖ 𝐵) |
19 | | difundir 4211 |
. . . . . 6
⊢ ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)) ∖ 𝐵) = ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ∪ (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵)) |
20 | 18, 19 | eqtri 2766 |
. . . . 5
⊢ ((𝑅 “ 𝐶) ∖ 𝐵) = ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ∪ (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵)) |
21 | | inss2 4160 |
. . . . . . . . 9
⊢ (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) |
22 | | imass1 5998 |
. . . . . . . . 9
⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) → ((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ⊆ ((𝐴 × 𝐵) “ 𝐶)) |
23 | | ssdif 4070 |
. . . . . . . . 9
⊢ (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ⊆ ((𝐴 × 𝐵) “ 𝐶) → (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ⊆ (((𝐴 × 𝐵) “ 𝐶) ∖ 𝐵)) |
24 | 21, 22, 23 | mp2b 10 |
. . . . . . . 8
⊢ (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ⊆ (((𝐴 × 𝐵) “ 𝐶) ∖ 𝐵) |
25 | | xpima 6074 |
. . . . . . . . . . 11
⊢ ((𝐴 × 𝐵) “ 𝐶) = if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) |
26 | | incom 4131 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) |
27 | | df-ss 3900 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 ⊆ 𝐴 ↔ (𝐶 ∩ 𝐴) = 𝐶) |
28 | 27 | biimpi 215 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ⊆ 𝐴 → (𝐶 ∩ 𝐴) = 𝐶) |
29 | 26, 28 | eqtr3id 2793 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ⊆ 𝐴 → (𝐴 ∩ 𝐶) = 𝐶) |
30 | 29 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (𝐴 ∩ 𝐶) = 𝐶) |
31 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → 𝐶 ≠ ∅) |
32 | 30, 31 | eqnetrd 3010 |
. . . . . . . . . . . 12
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (𝐴 ∩ 𝐶) ≠ ∅) |
33 | | neneq 2948 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∩ 𝐶) ≠ ∅ → ¬ (𝐴 ∩ 𝐶) = ∅) |
34 | | iffalse 4465 |
. . . . . . . . . . . 12
⊢ (¬
(𝐴 ∩ 𝐶) = ∅ → if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) = 𝐵) |
35 | 32, 33, 34 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) = 𝐵) |
36 | 25, 35 | syl5eq 2791 |
. . . . . . . . . 10
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) |
37 | 36 | difeq1d 4052 |
. . . . . . . . 9
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (((𝐴 × 𝐵) “ 𝐶) ∖ 𝐵) = (𝐵 ∖ 𝐵)) |
38 | | difid 4301 |
. . . . . . . . 9
⊢ (𝐵 ∖ 𝐵) = ∅ |
39 | 37, 38 | eqtrdi 2795 |
. . . . . . . 8
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (((𝐴 × 𝐵) “ 𝐶) ∖ 𝐵) = ∅) |
40 | 24, 39 | sseqtrid 3969 |
. . . . . . 7
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ⊆ ∅) |
41 | | ss0 4329 |
. . . . . . 7
⊢ ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ⊆ ∅ → (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) = ∅) |
42 | 40, 41 | syl 17 |
. . . . . 6
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) = ∅) |
43 | | df-ima 5593 |
. . . . . . . . . . 11
⊢ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ran ((𝑅 ∖ (𝐴 × 𝐵)) ↾ 𝐶) |
44 | | df-res 5592 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∖ (𝐴 × 𝐵)) ↾ 𝐶) = ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) |
45 | 44 | rneqi 5835 |
. . . . . . . . . . 11
⊢ ran
((𝑅 ∖ (𝐴 × 𝐵)) ↾ 𝐶) = ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) |
46 | 43, 45 | eqtri 2766 |
. . . . . . . . . 10
⊢ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) |
47 | 46 | ineq1i 4139 |
. . . . . . . . 9
⊢ (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∩ 𝐵) = (ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ∩ 𝐵) |
48 | | xpss1 5599 |
. . . . . . . . . . 11
⊢ (𝐶 ⊆ 𝐴 → (𝐶 × V) ⊆ (𝐴 × V)) |
49 | | sslin 4165 |
. . . . . . . . . . 11
⊢ ((𝐶 × V) ⊆ (𝐴 × V) → ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ⊆ ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V))) |
50 | | rnss 5837 |
. . . . . . . . . . 11
⊢ (((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ⊆ ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) → ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ⊆ ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V))) |
51 | 48, 49, 50 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝐶 ⊆ 𝐴 → ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ⊆ ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V))) |
52 | | ssn0 4331 |
. . . . . . . . . . . 12
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅) → 𝐴 ≠ ∅) |
53 | 52 | ancoms 458 |
. . . . . . . . . . 11
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → 𝐴 ≠ ∅) |
54 | | inss1 4159 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 × V) ∩ 𝑅) ⊆ (𝐴 × V) |
55 | | ssdif 4070 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 × V) ∩ 𝑅) ⊆ (𝐴 × V) → (((𝐴 × V) ∩ 𝑅) ∖ (𝐴 × 𝐵)) ⊆ ((𝐴 × V) ∖ (𝐴 × 𝐵))) |
56 | 54, 55 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 × V) ∩ 𝑅) ∖ (𝐴 × 𝐵)) ⊆ ((𝐴 × V) ∖ (𝐴 × 𝐵)) |
57 | | incom 4131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 × V) ∩ (𝑅 ∖ (𝐴 × 𝐵))) = ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) |
58 | | indif2 4201 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 × V) ∩ (𝑅 ∖ (𝐴 × 𝐵))) = (((𝐴 × V) ∩ 𝑅) ∖ (𝐴 × 𝐵)) |
59 | 57, 58 | eqtr3i 2768 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) = (((𝐴 × V) ∩ 𝑅) ∖ (𝐴 × 𝐵)) |
60 | | difxp2 6058 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 × (V ∖ 𝐵)) = ((𝐴 × V) ∖ (𝐴 × 𝐵)) |
61 | 56, 59, 60 | 3sstr4i 3960 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ (𝐴 × (V ∖ 𝐵)) |
62 | | rnss 5837 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ (𝐴 × (V ∖ 𝐵)) → ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ ran (𝐴 × (V ∖ 𝐵))) |
63 | 61, 62 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (𝐴 ≠ ∅ → ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ ran (𝐴 × (V ∖ 𝐵))) |
64 | | rnxp 6062 |
. . . . . . . . . . . . 13
⊢ (𝐴 ≠ ∅ → ran (𝐴 × (V ∖ 𝐵)) = (V ∖ 𝐵)) |
65 | 63, 64 | sseqtrd 3957 |
. . . . . . . . . . . 12
⊢ (𝐴 ≠ ∅ → ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ (V ∖ 𝐵)) |
66 | | disj2 4388 |
. . . . . . . . . . . 12
⊢ ((ran
((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ∩ 𝐵) = ∅ ↔ ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ (V ∖ 𝐵)) |
67 | 65, 66 | sylibr 233 |
. . . . . . . . . . 11
⊢ (𝐴 ≠ ∅ → (ran
((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ∩ 𝐵) = ∅) |
68 | 53, 67 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ∩ 𝐵) = ∅) |
69 | | ssdisj 4390 |
. . . . . . . . . 10
⊢ ((ran
((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ⊆ ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ∧ (ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ∩ 𝐵) = ∅) → (ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ∩ 𝐵) = ∅) |
70 | 51, 68, 69 | syl2an2 682 |
. . . . . . . . 9
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ∩ 𝐵) = ∅) |
71 | 47, 70 | syl5eq 2791 |
. . . . . . . 8
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∩ 𝐵) = ∅) |
72 | | disj3 4384 |
. . . . . . . 8
⊢ ((((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∩ 𝐵) = ∅ ↔ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵)) |
73 | 71, 72 | sylib 217 |
. . . . . . 7
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵)) |
74 | 73 | eqcomd 2744 |
. . . . . 6
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) = ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)) |
75 | 42, 74 | uneq12d 4094 |
. . . . 5
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ∪ (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵)) = (∅ ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶))) |
76 | 20, 75 | syl5eq 2791 |
. . . 4
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → ((𝑅 “ 𝐶) ∖ 𝐵) = (∅ ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶))) |
77 | 13, 76 | eqtr4id 2798 |
. . 3
⊢ ((𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴) → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅 “ 𝐶) ∖ 𝐵)) |
78 | 77 | ancoms 458 |
. 2
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅) → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅 “ 𝐶) ∖ 𝐵)) |
79 | 10, 78 | pm2.61dane 3031 |
1
⊢ (𝐶 ⊆ 𝐴 → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅 “ 𝐶) ∖ 𝐵)) |