Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opeldifid Structured version   Visualization version   GIF version

Theorem opeldifid 30044
Description: Ordered pair elementhood outside of the diagonal. (Contributed by Thierry Arnoux, 1-Jan-2020.)
Assertion
Ref Expression
opeldifid (Rel 𝐴 → (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ I ) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴𝑋𝑌)))

Proof of Theorem opeldifid
StepHypRef Expression
1 reldif 5579 . . . 4 (Rel 𝐴 → Rel (𝐴 ∖ I ))
2 brrelex2 5497 . . . 4 ((Rel (𝐴 ∖ I ) ∧ 𝑋(𝐴 ∖ I )𝑌) → 𝑌 ∈ V)
31, 2sylan 580 . . 3 ((Rel 𝐴𝑋(𝐴 ∖ I )𝑌) → 𝑌 ∈ V)
4 brrelex2 5497 . . . 4 ((Rel 𝐴𝑋𝐴𝑌) → 𝑌 ∈ V)
54adantrr 713 . . 3 ((Rel 𝐴 ∧ (𝑋𝐴𝑌𝑋𝑌)) → 𝑌 ∈ V)
6 brdif 5019 . . . 4 (𝑋(𝐴 ∖ I )𝑌 ↔ (𝑋𝐴𝑌 ∧ ¬ 𝑋 I 𝑌))
7 ideqg 5613 . . . . . 6 (𝑌 ∈ V → (𝑋 I 𝑌𝑋 = 𝑌))
87necon3bbid 3021 . . . . 5 (𝑌 ∈ V → (¬ 𝑋 I 𝑌𝑋𝑌))
98anbi2d 628 . . . 4 (𝑌 ∈ V → ((𝑋𝐴𝑌 ∧ ¬ 𝑋 I 𝑌) ↔ (𝑋𝐴𝑌𝑋𝑌)))
106, 9syl5bb 284 . . 3 (𝑌 ∈ V → (𝑋(𝐴 ∖ I )𝑌 ↔ (𝑋𝐴𝑌𝑋𝑌)))
113, 5, 10pm5.21nd 798 . 2 (Rel 𝐴 → (𝑋(𝐴 ∖ I )𝑌 ↔ (𝑋𝐴𝑌𝑋𝑌)))
12 df-br 4967 . 2 (𝑋(𝐴 ∖ I )𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ I ))
13 df-br 4967 . . 3 (𝑋𝐴𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ 𝐴)
1413anbi1i 623 . 2 ((𝑋𝐴𝑌𝑋𝑌) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴𝑋𝑌))
1511, 12, 143bitr3g 314 1 (Rel 𝐴 → (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ I ) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴𝑋𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wcel 2081  wne 2984  Vcvv 3437  cdif 3860  cop 4482   class class class wbr 4966   I cid 5352  Rel wrel 5453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pr 5226
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-nul 4216  df-if 4386  df-sn 4477  df-pr 4479  df-op 4483  df-br 4967  df-opab 5029  df-id 5353  df-xp 5454  df-rel 5455
This theorem is referenced by:  qtophaus  30722
  Copyright terms: Public domain W3C validator