![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opeldifid | Structured version Visualization version GIF version |
Description: Ordered pair elementhood outside of the diagonal. (Contributed by Thierry Arnoux, 1-Jan-2020.) |
Ref | Expression |
---|---|
opeldifid | ⊢ (Rel 𝐴 → (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ I ) ↔ (〈𝑋, 𝑌〉 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldif 5832 | . . . 4 ⊢ (Rel 𝐴 → Rel (𝐴 ∖ I )) | |
2 | brrelex2 5747 | . . . 4 ⊢ ((Rel (𝐴 ∖ I ) ∧ 𝑋(𝐴 ∖ I )𝑌) → 𝑌 ∈ V) | |
3 | 1, 2 | sylan 580 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝑋(𝐴 ∖ I )𝑌) → 𝑌 ∈ V) |
4 | brrelex2 5747 | . . . 4 ⊢ ((Rel 𝐴 ∧ 𝑋𝐴𝑌) → 𝑌 ∈ V) | |
5 | 4 | adantrr 717 | . . 3 ⊢ ((Rel 𝐴 ∧ (𝑋𝐴𝑌 ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ V) |
6 | brdif 5204 | . . . 4 ⊢ (𝑋(𝐴 ∖ I )𝑌 ↔ (𝑋𝐴𝑌 ∧ ¬ 𝑋 I 𝑌)) | |
7 | ideqg 5869 | . . . . . 6 ⊢ (𝑌 ∈ V → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) | |
8 | 7 | necon3bbid 2978 | . . . . 5 ⊢ (𝑌 ∈ V → (¬ 𝑋 I 𝑌 ↔ 𝑋 ≠ 𝑌)) |
9 | 8 | anbi2d 630 | . . . 4 ⊢ (𝑌 ∈ V → ((𝑋𝐴𝑌 ∧ ¬ 𝑋 I 𝑌) ↔ (𝑋𝐴𝑌 ∧ 𝑋 ≠ 𝑌))) |
10 | 6, 9 | bitrid 283 | . . 3 ⊢ (𝑌 ∈ V → (𝑋(𝐴 ∖ I )𝑌 ↔ (𝑋𝐴𝑌 ∧ 𝑋 ≠ 𝑌))) |
11 | 3, 5, 10 | pm5.21nd 802 | . 2 ⊢ (Rel 𝐴 → (𝑋(𝐴 ∖ I )𝑌 ↔ (𝑋𝐴𝑌 ∧ 𝑋 ≠ 𝑌))) |
12 | df-br 5152 | . 2 ⊢ (𝑋(𝐴 ∖ I )𝑌 ↔ 〈𝑋, 𝑌〉 ∈ (𝐴 ∖ I )) | |
13 | df-br 5152 | . . 3 ⊢ (𝑋𝐴𝑌 ↔ 〈𝑋, 𝑌〉 ∈ 𝐴) | |
14 | 13 | anbi1i 624 | . 2 ⊢ ((𝑋𝐴𝑌 ∧ 𝑋 ≠ 𝑌) ↔ (〈𝑋, 𝑌〉 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) |
15 | 11, 12, 14 | 3bitr3g 313 | 1 ⊢ (Rel 𝐴 → (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ I ) ↔ (〈𝑋, 𝑌〉 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ≠ wne 2940 Vcvv 3481 ∖ cdif 3963 〈cop 4640 class class class wbr 5151 I cid 5586 Rel wrel 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 |
This theorem is referenced by: qtophaus 33829 |
Copyright terms: Public domain | W3C validator |