| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opeldifid | Structured version Visualization version GIF version | ||
| Description: Ordered pair elementhood outside of the diagonal. (Contributed by Thierry Arnoux, 1-Jan-2020.) |
| Ref | Expression |
|---|---|
| opeldifid | ⊢ (Rel 𝐴 → (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ I ) ↔ (〈𝑋, 𝑌〉 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldif 5762 | . . . 4 ⊢ (Rel 𝐴 → Rel (𝐴 ∖ I )) | |
| 2 | brrelex2 5677 | . . . 4 ⊢ ((Rel (𝐴 ∖ I ) ∧ 𝑋(𝐴 ∖ I )𝑌) → 𝑌 ∈ V) | |
| 3 | 1, 2 | sylan 580 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝑋(𝐴 ∖ I )𝑌) → 𝑌 ∈ V) |
| 4 | brrelex2 5677 | . . . 4 ⊢ ((Rel 𝐴 ∧ 𝑋𝐴𝑌) → 𝑌 ∈ V) | |
| 5 | 4 | adantrr 717 | . . 3 ⊢ ((Rel 𝐴 ∧ (𝑋𝐴𝑌 ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ V) |
| 6 | brdif 5148 | . . . 4 ⊢ (𝑋(𝐴 ∖ I )𝑌 ↔ (𝑋𝐴𝑌 ∧ ¬ 𝑋 I 𝑌)) | |
| 7 | ideqg 5798 | . . . . . 6 ⊢ (𝑌 ∈ V → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) | |
| 8 | 7 | necon3bbid 2962 | . . . . 5 ⊢ (𝑌 ∈ V → (¬ 𝑋 I 𝑌 ↔ 𝑋 ≠ 𝑌)) |
| 9 | 8 | anbi2d 630 | . . . 4 ⊢ (𝑌 ∈ V → ((𝑋𝐴𝑌 ∧ ¬ 𝑋 I 𝑌) ↔ (𝑋𝐴𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 10 | 6, 9 | bitrid 283 | . . 3 ⊢ (𝑌 ∈ V → (𝑋(𝐴 ∖ I )𝑌 ↔ (𝑋𝐴𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 11 | 3, 5, 10 | pm5.21nd 801 | . 2 ⊢ (Rel 𝐴 → (𝑋(𝐴 ∖ I )𝑌 ↔ (𝑋𝐴𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 12 | df-br 5096 | . 2 ⊢ (𝑋(𝐴 ∖ I )𝑌 ↔ 〈𝑋, 𝑌〉 ∈ (𝐴 ∖ I )) | |
| 13 | df-br 5096 | . . 3 ⊢ (𝑋𝐴𝑌 ↔ 〈𝑋, 𝑌〉 ∈ 𝐴) | |
| 14 | 13 | anbi1i 624 | . 2 ⊢ ((𝑋𝐴𝑌 ∧ 𝑋 ≠ 𝑌) ↔ (〈𝑋, 𝑌〉 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) |
| 15 | 11, 12, 14 | 3bitr3g 313 | 1 ⊢ (Rel 𝐴 → (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ I ) ↔ (〈𝑋, 𝑌〉 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ∖ cdif 3902 〈cop 4585 class class class wbr 5095 I cid 5517 Rel wrel 5628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 |
| This theorem is referenced by: qtophaus 33802 |
| Copyright terms: Public domain | W3C validator |