Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zfregfr | Structured version Visualization version GIF version |
Description: The membership relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
zfregfr | ⊢ E Fr 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfepfr 5565 | . 2 ⊢ ( E Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) | |
2 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | zfreg 9284 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑦 ∩ 𝑥) = ∅) | |
4 | 2, 3 | mpan 686 | . . . 4 ⊢ (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 (𝑦 ∩ 𝑥) = ∅) |
5 | incom 4131 | . . . . . 6 ⊢ (𝑦 ∩ 𝑥) = (𝑥 ∩ 𝑦) | |
6 | 5 | eqeq1i 2743 | . . . . 5 ⊢ ((𝑦 ∩ 𝑥) = ∅ ↔ (𝑥 ∩ 𝑦) = ∅) |
7 | 6 | rexbii 3177 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 (𝑦 ∩ 𝑥) = ∅ ↔ ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
8 | 4, 7 | sylib 217 | . . 3 ⊢ (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
9 | 8 | adantl 481 | . 2 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
10 | 1, 9 | mpgbir 1803 | 1 ⊢ E Fr 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 E cep 5485 Fr wfr 5532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 df-fr 5535 |
This theorem is referenced by: en2lp 9294 dford2 9308 noinfep 9348 zfregs 9421 bnj852 32801 dford5reg 33664 trelpss 41962 |
Copyright terms: Public domain | W3C validator |