MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfregfr Structured version   Visualization version   GIF version

Theorem zfregfr 9070
Description: The membership relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.)
Assertion
Ref Expression
zfregfr E Fr 𝐴

Proof of Theorem zfregfr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 5542 . 2 ( E Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))
2 vex 3499 . . . . 5 𝑥 ∈ V
3 zfreg 9061 . . . . 5 ((𝑥 ∈ V ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑦𝑥) = ∅)
42, 3mpan 688 . . . 4 (𝑥 ≠ ∅ → ∃𝑦𝑥 (𝑦𝑥) = ∅)
5 incom 4180 . . . . . 6 (𝑦𝑥) = (𝑥𝑦)
65eqeq1i 2828 . . . . 5 ((𝑦𝑥) = ∅ ↔ (𝑥𝑦) = ∅)
76rexbii 3249 . . . 4 (∃𝑦𝑥 (𝑦𝑥) = ∅ ↔ ∃𝑦𝑥 (𝑥𝑦) = ∅)
84, 7sylib 220 . . 3 (𝑥 ≠ ∅ → ∃𝑦𝑥 (𝑥𝑦) = ∅)
98adantl 484 . 2 ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅)
101, 9mpgbir 1800 1 E Fr 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wrex 3141  Vcvv 3496  cin 3937  wss 3938  c0 4293   E cep 5466   Fr wfr 5513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-reg 9058
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-opab 5131  df-eprel 5467  df-fr 5516
This theorem is referenced by:  en2lp  9071  dford2  9085  noinfep  9125  zfregs  9176  bnj852  32195  dford5reg  33029  trelpss  40794
  Copyright terms: Public domain W3C validator