| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfregfr | Structured version Visualization version GIF version | ||
| Description: The membership relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| zfregfr | ⊢ E Fr 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfepfr 5635 | . 2 ⊢ ( E Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) | |
| 2 | vex 3461 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | zfreg 9601 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑦 ∩ 𝑥) = ∅) | |
| 4 | 2, 3 | mpan 690 | . . . 4 ⊢ (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 (𝑦 ∩ 𝑥) = ∅) |
| 5 | incom 4182 | . . . . . 6 ⊢ (𝑦 ∩ 𝑥) = (𝑥 ∩ 𝑦) | |
| 6 | 5 | eqeq1i 2739 | . . . . 5 ⊢ ((𝑦 ∩ 𝑥) = ∅ ↔ (𝑥 ∩ 𝑦) = ∅) |
| 7 | 6 | rexbii 3082 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 (𝑦 ∩ 𝑥) = ∅ ↔ ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
| 8 | 4, 7 | sylib 218 | . . 3 ⊢ (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
| 10 | 1, 9 | mpgbir 1798 | 1 ⊢ E Fr 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 Vcvv 3457 ∩ cin 3923 ⊆ wss 3924 ∅c0 4306 E cep 5549 Fr wfr 5600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 ax-reg 9598 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5117 df-opab 5179 df-eprel 5550 df-fr 5603 |
| This theorem is referenced by: en2lp 9612 dford2 9626 noinfep 9666 zfregs 9738 bnj852 34873 dford5reg 35721 trelpss 44405 |
| Copyright terms: Public domain | W3C validator |