| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfregfr | Structured version Visualization version GIF version | ||
| Description: The membership relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| zfregfr | ⊢ E Fr 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfepfr 5598 | . 2 ⊢ ( E Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) | |
| 2 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | zfreg 9482 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑦 ∩ 𝑥) = ∅) | |
| 4 | 2, 3 | mpan 690 | . . . 4 ⊢ (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 (𝑦 ∩ 𝑥) = ∅) |
| 5 | incom 4156 | . . . . . 6 ⊢ (𝑦 ∩ 𝑥) = (𝑥 ∩ 𝑦) | |
| 6 | 5 | eqeq1i 2736 | . . . . 5 ⊢ ((𝑦 ∩ 𝑥) = ∅ ↔ (𝑥 ∩ 𝑦) = ∅) |
| 7 | 6 | rexbii 3079 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 (𝑦 ∩ 𝑥) = ∅ ↔ ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
| 8 | 4, 7 | sylib 218 | . . 3 ⊢ (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
| 10 | 1, 9 | mpgbir 1800 | 1 ⊢ E Fr 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 E cep 5513 Fr wfr 5564 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-eprel 5514 df-fr 5567 |
| This theorem is referenced by: elirrvALT 9495 en2lp 9496 dford2 9510 noinfep 9550 zfregs 9622 bnj852 34933 dford5reg 35824 trelpss 44546 |
| Copyright terms: Public domain | W3C validator |