MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfregfr Structured version   Visualization version   GIF version

Theorem zfregfr 9624
Description: The membership relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.)
Assertion
Ref Expression
zfregfr E Fr 𝐴

Proof of Theorem zfregfr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 5643 . 2 ( E Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))
2 vex 3468 . . . . 5 𝑥 ∈ V
3 zfreg 9614 . . . . 5 ((𝑥 ∈ V ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑦𝑥) = ∅)
42, 3mpan 690 . . . 4 (𝑥 ≠ ∅ → ∃𝑦𝑥 (𝑦𝑥) = ∅)
5 incom 4189 . . . . . 6 (𝑦𝑥) = (𝑥𝑦)
65eqeq1i 2741 . . . . 5 ((𝑦𝑥) = ∅ ↔ (𝑥𝑦) = ∅)
76rexbii 3084 . . . 4 (∃𝑦𝑥 (𝑦𝑥) = ∅ ↔ ∃𝑦𝑥 (𝑥𝑦) = ∅)
84, 7sylib 218 . . 3 (𝑥 ≠ ∅ → ∃𝑦𝑥 (𝑥𝑦) = ∅)
98adantl 481 . 2 ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅)
101, 9mpgbir 1799 1 E Fr 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  wrex 3061  Vcvv 3464  cin 3930  wss 3931  c0 4313   E cep 5557   Fr wfr 5608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-reg 9611
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-eprel 5558  df-fr 5611
This theorem is referenced by:  en2lp  9625  dford2  9639  noinfep  9679  zfregs  9751  bnj852  34957  dford5reg  35805  trelpss  44446
  Copyright terms: Public domain W3C validator