MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfregfr Structured version   Visualization version   GIF version

Theorem zfregfr 9646
Description: The membership relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.)
Assertion
Ref Expression
zfregfr E Fr 𝐴

Proof of Theorem zfregfr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 5668 . 2 ( E Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))
2 vex 3483 . . . . 5 𝑥 ∈ V
3 zfreg 9636 . . . . 5 ((𝑥 ∈ V ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑦𝑥) = ∅)
42, 3mpan 690 . . . 4 (𝑥 ≠ ∅ → ∃𝑦𝑥 (𝑦𝑥) = ∅)
5 incom 4208 . . . . . 6 (𝑦𝑥) = (𝑥𝑦)
65eqeq1i 2741 . . . . 5 ((𝑦𝑥) = ∅ ↔ (𝑥𝑦) = ∅)
76rexbii 3093 . . . 4 (∃𝑦𝑥 (𝑦𝑥) = ∅ ↔ ∃𝑦𝑥 (𝑥𝑦) = ∅)
84, 7sylib 218 . . 3 (𝑥 ≠ ∅ → ∃𝑦𝑥 (𝑥𝑦) = ∅)
98adantl 481 . 2 ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅)
101, 9mpgbir 1798 1 E Fr 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  wrex 3069  Vcvv 3479  cin 3949  wss 3950  c0 4332   E cep 5582   Fr wfr 5633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-reg 9633
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-eprel 5583  df-fr 5636
This theorem is referenced by:  en2lp  9647  dford2  9661  noinfep  9701  zfregs  9773  bnj852  34936  dford5reg  35784  trelpss  44479
  Copyright terms: Public domain W3C validator