| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressucdifsn2 | Structured version Visualization version GIF version | ||
| Description: The difference between restrictions to the successor and the singleton of a class is the restriction to the class, see ressucdifsn 38226. (Contributed by Peter Mazsa, 24-Jul-2024.) |
| Ref | Expression |
|---|---|
| ressucdifsn2 | ⊢ ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjcsn 9533 | . 2 ⊢ (𝐴 ∩ {𝐴}) = ∅ | |
| 2 | disjresundif 38224 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ → ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3908 ∪ cun 3909 ∩ cin 3910 ∅c0 4292 {csn 4585 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-reg 9521 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-opab 5165 df-xp 5637 df-rel 5638 df-res 5643 |
| This theorem is referenced by: ressucdifsn 38226 partsuc2 38764 |
| Copyright terms: Public domain | W3C validator |