![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressucdifsn2 | Structured version Visualization version GIF version |
Description: The difference between restrictions to the successor and the singleton of a class is the restriction to the class, see ressucdifsn 37637. (Contributed by Peter Mazsa, 24-Jul-2024.) |
Ref | Expression |
---|---|
ressucdifsn2 | ⊢ ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjcsn 9613 | . 2 ⊢ (𝐴 ∩ {𝐴}) = ∅ | |
2 | disjresundif 37635 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ → ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∖ cdif 3941 ∪ cun 3942 ∩ cin 3943 ∅c0 4318 {csn 4624 ↾ cres 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-reg 9601 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-opab 5205 df-xp 5678 df-rel 5679 df-res 5684 |
This theorem is referenced by: ressucdifsn 37637 partsuc2 38175 |
Copyright terms: Public domain | W3C validator |