![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressucdifsn2 | Structured version Visualization version GIF version |
Description: The difference between restrictions to the successor and the singleton of a class is the restriction to the class, see ressucdifsn 37846. (Contributed by Peter Mazsa, 24-Jul-2024.) |
Ref | Expression |
---|---|
ressucdifsn2 | ⊢ ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjcsn 9629 | . 2 ⊢ (𝐴 ∩ {𝐴}) = ∅ | |
2 | disjresundif 37844 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ → ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∖ cdif 3941 ∪ cun 3942 ∩ cin 3943 ∅c0 4322 {csn 4630 ↾ cres 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-reg 9617 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-opab 5212 df-xp 5684 df-rel 5685 df-res 5690 |
This theorem is referenced by: ressucdifsn 37846 partsuc2 38381 |
Copyright terms: Public domain | W3C validator |