Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressucdifsn2 Structured version   Visualization version   GIF version

Theorem ressucdifsn2 37845
Description: The difference between restrictions to the successor and the singleton of a class is the restriction to the class, see ressucdifsn 37846. (Contributed by Peter Mazsa, 24-Jul-2024.)
Assertion
Ref Expression
ressucdifsn2 ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) = (𝑅𝐴)

Proof of Theorem ressucdifsn2
StepHypRef Expression
1 disjcsn 9629 . 2 (𝐴 ∩ {𝐴}) = ∅
2 disjresundif 37844 . 2 ((𝐴 ∩ {𝐴}) = ∅ → ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) = (𝑅𝐴))
31, 2ax-mp 5 1 ((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) = (𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cdif 3941  cun 3942  cin 3943  c0 4322  {csn 4630  cres 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-reg 9617
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-opab 5212  df-xp 5684  df-rel 5685  df-res 5690
This theorem is referenced by:  ressucdifsn  37846  partsuc2  38381
  Copyright terms: Public domain W3C validator