MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliun Structured version   Visualization version   GIF version

Theorem voliun 25053
Description: The Lebesgue measure function is countably additive. (Contributed by Mario Carneiro, 18-Mar-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
voliun.1 𝑆 = seq1( + , 𝐺)
voliun.2 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘𝐴))
Assertion
Ref Expression
voliun ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran 𝑆, ℝ*, < ))

Proof of Theorem voliun
Dummy variables 𝑖 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 484 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐴 ∈ dom vol)
21ralimi 3084 . . . . 5 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ 𝐴 ∈ dom vol)
32adantr 482 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ∀𝑛 ∈ ℕ 𝐴 ∈ dom vol)
4 eqid 2733 . . . . 5 (𝑛 ∈ ℕ ↦ 𝐴) = (𝑛 ∈ ℕ ↦ 𝐴)
54fmpt 7105 . . . 4 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ↔ (𝑛 ∈ ℕ ↦ 𝐴):ℕ⟶dom vol)
63, 5sylib 217 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (𝑛 ∈ ℕ ↦ 𝐴):ℕ⟶dom vol)
74fvmpt2 7005 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol) → ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = 𝐴)
87adantrr 716 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ)) → ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = 𝐴)
98ralimiaa 3083 . . . . . 6 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = 𝐴)
10 disjeq2 5116 . . . . . 6 (∀𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = 𝐴 → (Disj 𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) ↔ Disj 𝑛 ∈ ℕ 𝐴))
119, 10syl 17 . . . . 5 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (Disj 𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) ↔ Disj 𝑛 ∈ ℕ 𝐴))
1211biimpar 479 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → Disj 𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))
13 nfcv 2904 . . . . 5 𝑖((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)
14 nffvmpt1 6899 . . . . 5 𝑛((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)
15 fveq2 6888 . . . . 5 (𝑛 = 𝑖 → ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖))
1613, 14, 15cbvdisj 5122 . . . 4 (Disj 𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) ↔ Disj 𝑖 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖))
1712, 16sylib 217 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → Disj 𝑖 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖))
18 eqid 2733 . . 3 (𝑚 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚)))) = (𝑚 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚))))
19 eqid 2733 . . 3 seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))))
20 nfcv 2904 . . . 4 𝑚(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))
21 nfcv 2904 . . . . 5 𝑛vol
22 nffvmpt1 6899 . . . . 5 𝑛((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚)
2321, 22nffv 6898 . . . 4 𝑛(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚))
24 2fveq3 6893 . . . 4 (𝑛 = 𝑚 → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚)))
2520, 23, 24cbvmpt 5258 . . 3 (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))) = (𝑚 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚)))
267fveq2d 6892 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol) → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴))
2726eleq1d 2819 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol) → ((vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ ↔ (vol‘𝐴) ∈ ℝ))
2827biimprd 247 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol) → ((vol‘𝐴) ∈ ℝ → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ))
2928impr 456 . . . . . 6 ((𝑛 ∈ ℕ ∧ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ)) → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ)
3029ralimiaa 3083 . . . . 5 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ)
3130adantr 482 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ)
32 nfv 1918 . . . . 5 𝑖(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ
3321, 14nffv 6898 . . . . . 6 𝑛(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖))
3433nfel1 2920 . . . . 5 𝑛(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)) ∈ ℝ
35 2fveq3 6893 . . . . . 6 (𝑛 = 𝑖 → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)))
3635eleq1d 2819 . . . . 5 (𝑛 = 𝑖 → ((vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ ↔ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)) ∈ ℝ))
3732, 34, 36cbvralw 3304 . . . 4 (∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ ↔ ∀𝑖 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)) ∈ ℝ)
3831, 37sylib 217 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ∀𝑖 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)) ∈ ℝ)
396, 17, 18, 19, 25, 38voliunlem3 25051 . 2 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ ran (𝑛 ∈ ℕ ↦ 𝐴)) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))), ℝ*, < ))
40 dfiun2g 5032 . . . . 5 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = 𝐴})
413, 40syl 17 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → 𝑛 ∈ ℕ 𝐴 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = 𝐴})
424rnmpt 5952 . . . . 5 ran (𝑛 ∈ ℕ ↦ 𝐴) = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = 𝐴}
4342unieqi 4920 . . . 4 ran (𝑛 ∈ ℕ ↦ 𝐴) = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = 𝐴}
4441, 43eqtr4di 2791 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → 𝑛 ∈ ℕ 𝐴 = ran (𝑛 ∈ ℕ ↦ 𝐴))
4544fveq2d 6892 . 2 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = (vol‘ ran (𝑛 ∈ ℕ ↦ 𝐴)))
46 voliun.1 . . . . 5 𝑆 = seq1( + , 𝐺)
47 voliun.2 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘𝐴))
48 eqid 2733 . . . . . . . 8 ℕ = ℕ
4926adantrr 716 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ)) → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴))
5049ralimiaa 3083 . . . . . . . . 9 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴))
5150adantr 482 . . . . . . . 8 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴))
52 mpteq12 5239 . . . . . . . 8 ((ℕ = ℕ ∧ ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴)) → (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘𝐴)))
5348, 51, 52sylancr 588 . . . . . . 7 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘𝐴)))
5447, 53eqtr4id 2792 . . . . . 6 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))))
5554seqeq3d 13970 . . . . 5 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))))
5646, 55eqtrid 2785 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → 𝑆 = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))))
5756rneqd 5935 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ran 𝑆 = ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))))
5857supeq1d 9437 . 2 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))), ℝ*, < ))
5939, 45, 583eqtr4d 2783 1 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  {cab 2710  wral 3062  wrex 3071  cin 3946   cuni 4907   ciun 4996  Disj wdisj 5112  cmpt 5230  dom cdm 5675  ran crn 5676  wf 6536  cfv 6540  supcsup 9431  cr 11105  1c1 11107   + caddc 11109  *cxr 11243   < clt 11244  cn 12208  seqcseq 13962  vol*covol 24961  volcvol 24962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cc 10426  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xadd 13089  df-ioo 13324  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429  df-sum 15629  df-xmet 20922  df-met 20923  df-ovol 24963  df-vol 24964
This theorem is referenced by:  volsup  25055  vitalilem4  25110  voliune  33165  voliunsge0lem  45123
  Copyright terms: Public domain W3C validator