MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliun Structured version   Visualization version   GIF version

Theorem voliun 25071
Description: The Lebesgue measure function is countably additive. (Contributed by Mario Carneiro, 18-Mar-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
voliun.1 𝑆 = seq1( + , 𝐺)
voliun.2 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘𝐴))
Assertion
Ref Expression
voliun ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran 𝑆, ℝ*, < ))

Proof of Theorem voliun
Dummy variables 𝑖 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 484 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐴 ∈ dom vol)
21ralimi 3084 . . . . 5 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ 𝐴 ∈ dom vol)
32adantr 482 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ∀𝑛 ∈ ℕ 𝐴 ∈ dom vol)
4 eqid 2733 . . . . 5 (𝑛 ∈ ℕ ↦ 𝐴) = (𝑛 ∈ ℕ ↦ 𝐴)
54fmpt 7110 . . . 4 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ↔ (𝑛 ∈ ℕ ↦ 𝐴):ℕ⟶dom vol)
63, 5sylib 217 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (𝑛 ∈ ℕ ↦ 𝐴):ℕ⟶dom vol)
74fvmpt2 7010 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol) → ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = 𝐴)
87adantrr 716 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ)) → ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = 𝐴)
98ralimiaa 3083 . . . . . 6 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = 𝐴)
10 disjeq2 5118 . . . . . 6 (∀𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = 𝐴 → (Disj 𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) ↔ Disj 𝑛 ∈ ℕ 𝐴))
119, 10syl 17 . . . . 5 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (Disj 𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) ↔ Disj 𝑛 ∈ ℕ 𝐴))
1211biimpar 479 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → Disj 𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))
13 nfcv 2904 . . . . 5 𝑖((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)
14 nffvmpt1 6903 . . . . 5 𝑛((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)
15 fveq2 6892 . . . . 5 (𝑛 = 𝑖 → ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖))
1613, 14, 15cbvdisj 5124 . . . 4 (Disj 𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) ↔ Disj 𝑖 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖))
1712, 16sylib 217 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → Disj 𝑖 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖))
18 eqid 2733 . . 3 (𝑚 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚)))) = (𝑚 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚))))
19 eqid 2733 . . 3 seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))))
20 nfcv 2904 . . . 4 𝑚(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))
21 nfcv 2904 . . . . 5 𝑛vol
22 nffvmpt1 6903 . . . . 5 𝑛((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚)
2321, 22nffv 6902 . . . 4 𝑛(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚))
24 2fveq3 6897 . . . 4 (𝑛 = 𝑚 → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚)))
2520, 23, 24cbvmpt 5260 . . 3 (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))) = (𝑚 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚)))
267fveq2d 6896 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol) → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴))
2726eleq1d 2819 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol) → ((vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ ↔ (vol‘𝐴) ∈ ℝ))
2827biimprd 247 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol) → ((vol‘𝐴) ∈ ℝ → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ))
2928impr 456 . . . . . 6 ((𝑛 ∈ ℕ ∧ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ)) → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ)
3029ralimiaa 3083 . . . . 5 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ)
3130adantr 482 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ)
32 nfv 1918 . . . . 5 𝑖(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ
3321, 14nffv 6902 . . . . . 6 𝑛(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖))
3433nfel1 2920 . . . . 5 𝑛(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)) ∈ ℝ
35 2fveq3 6897 . . . . . 6 (𝑛 = 𝑖 → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)))
3635eleq1d 2819 . . . . 5 (𝑛 = 𝑖 → ((vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ ↔ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)) ∈ ℝ))
3732, 34, 36cbvralw 3304 . . . 4 (∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ ↔ ∀𝑖 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)) ∈ ℝ)
3831, 37sylib 217 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ∀𝑖 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)) ∈ ℝ)
396, 17, 18, 19, 25, 38voliunlem3 25069 . 2 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ ran (𝑛 ∈ ℕ ↦ 𝐴)) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))), ℝ*, < ))
40 dfiun2g 5034 . . . . 5 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = 𝐴})
413, 40syl 17 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → 𝑛 ∈ ℕ 𝐴 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = 𝐴})
424rnmpt 5955 . . . . 5 ran (𝑛 ∈ ℕ ↦ 𝐴) = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = 𝐴}
4342unieqi 4922 . . . 4 ran (𝑛 ∈ ℕ ↦ 𝐴) = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = 𝐴}
4441, 43eqtr4di 2791 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → 𝑛 ∈ ℕ 𝐴 = ran (𝑛 ∈ ℕ ↦ 𝐴))
4544fveq2d 6896 . 2 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = (vol‘ ran (𝑛 ∈ ℕ ↦ 𝐴)))
46 voliun.1 . . . . 5 𝑆 = seq1( + , 𝐺)
47 voliun.2 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘𝐴))
48 eqid 2733 . . . . . . . 8 ℕ = ℕ
4926adantrr 716 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ)) → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴))
5049ralimiaa 3083 . . . . . . . . 9 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴))
5150adantr 482 . . . . . . . 8 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴))
52 mpteq12 5241 . . . . . . . 8 ((ℕ = ℕ ∧ ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴)) → (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘𝐴)))
5348, 51, 52sylancr 588 . . . . . . 7 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘𝐴)))
5447, 53eqtr4id 2792 . . . . . 6 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))))
5554seqeq3d 13974 . . . . 5 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))))
5646, 55eqtrid 2785 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → 𝑆 = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))))
5756rneqd 5938 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ran 𝑆 = ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))))
5857supeq1d 9441 . 2 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))), ℝ*, < ))
5939, 45, 583eqtr4d 2783 1 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  {cab 2710  wral 3062  wrex 3071  cin 3948   cuni 4909   ciun 4998  Disj wdisj 5114  cmpt 5232  dom cdm 5677  ran crn 5678  wf 6540  cfv 6544  supcsup 9435  cr 11109  1c1 11111   + caddc 11113  *cxr 11247   < clt 11248  cn 12212  seqcseq 13966  vol*covol 24979  volcvol 24980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cc 10430  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-oi 9505  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-q 12933  df-rp 12975  df-xadd 13093  df-ioo 13328  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-rlim 15433  df-sum 15633  df-xmet 20937  df-met 20938  df-ovol 24981  df-vol 24982
This theorem is referenced by:  volsup  25073  vitalilem4  25128  voliune  33258  voliunsge0lem  45236
  Copyright terms: Public domain W3C validator