MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliun Structured version   Visualization version   GIF version

Theorem voliun 25602
Description: The Lebesgue measure function is countably additive. (Contributed by Mario Carneiro, 18-Mar-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
voliun.1 𝑆 = seq1( + , 𝐺)
voliun.2 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘𝐴))
Assertion
Ref Expression
voliun ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran 𝑆, ℝ*, < ))

Proof of Theorem voliun
Dummy variables 𝑖 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐴 ∈ dom vol)
21ralimi 3080 . . . . 5 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ 𝐴 ∈ dom vol)
32adantr 480 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ∀𝑛 ∈ ℕ 𝐴 ∈ dom vol)
4 eqid 2734 . . . . 5 (𝑛 ∈ ℕ ↦ 𝐴) = (𝑛 ∈ ℕ ↦ 𝐴)
54fmpt 7129 . . . 4 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ↔ (𝑛 ∈ ℕ ↦ 𝐴):ℕ⟶dom vol)
63, 5sylib 218 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (𝑛 ∈ ℕ ↦ 𝐴):ℕ⟶dom vol)
74fvmpt2 7026 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol) → ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = 𝐴)
87adantrr 717 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ)) → ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = 𝐴)
98ralimiaa 3079 . . . . . 6 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = 𝐴)
10 disjeq2 5118 . . . . . 6 (∀𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = 𝐴 → (Disj 𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) ↔ Disj 𝑛 ∈ ℕ 𝐴))
119, 10syl 17 . . . . 5 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (Disj 𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) ↔ Disj 𝑛 ∈ ℕ 𝐴))
1211biimpar 477 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → Disj 𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))
13 nfcv 2902 . . . . 5 𝑖((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)
14 nffvmpt1 6917 . . . . 5 𝑛((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)
15 fveq2 6906 . . . . 5 (𝑛 = 𝑖 → ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖))
1613, 14, 15cbvdisj 5124 . . . 4 (Disj 𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) ↔ Disj 𝑖 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖))
1712, 16sylib 218 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → Disj 𝑖 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖))
18 eqid 2734 . . 3 (𝑚 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚)))) = (𝑚 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚))))
19 eqid 2734 . . 3 seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))))
20 nfcv 2902 . . . 4 𝑚(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))
21 nfcv 2902 . . . . 5 𝑛vol
22 nffvmpt1 6917 . . . . 5 𝑛((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚)
2321, 22nffv 6916 . . . 4 𝑛(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚))
24 2fveq3 6911 . . . 4 (𝑛 = 𝑚 → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚)))
2520, 23, 24cbvmpt 5258 . . 3 (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))) = (𝑚 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚)))
267fveq2d 6910 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol) → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴))
2726eleq1d 2823 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol) → ((vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ ↔ (vol‘𝐴) ∈ ℝ))
2827biimprd 248 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol) → ((vol‘𝐴) ∈ ℝ → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ))
2928impr 454 . . . . . 6 ((𝑛 ∈ ℕ ∧ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ)) → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ)
3029ralimiaa 3079 . . . . 5 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ)
3130adantr 480 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ)
32 nfv 1911 . . . . 5 𝑖(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ
3321, 14nffv 6916 . . . . . 6 𝑛(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖))
3433nfel1 2919 . . . . 5 𝑛(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)) ∈ ℝ
35 2fveq3 6911 . . . . . 6 (𝑛 = 𝑖 → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)))
3635eleq1d 2823 . . . . 5 (𝑛 = 𝑖 → ((vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ ↔ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)) ∈ ℝ))
3732, 34, 36cbvralw 3303 . . . 4 (∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ ↔ ∀𝑖 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)) ∈ ℝ)
3831, 37sylib 218 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ∀𝑖 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)) ∈ ℝ)
396, 17, 18, 19, 25, 38voliunlem3 25600 . 2 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ ran (𝑛 ∈ ℕ ↦ 𝐴)) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))), ℝ*, < ))
40 dfiun2g 5034 . . . . 5 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = 𝐴})
413, 40syl 17 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → 𝑛 ∈ ℕ 𝐴 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = 𝐴})
424rnmpt 5970 . . . . 5 ran (𝑛 ∈ ℕ ↦ 𝐴) = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = 𝐴}
4342unieqi 4923 . . . 4 ran (𝑛 ∈ ℕ ↦ 𝐴) = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = 𝐴}
4441, 43eqtr4di 2792 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → 𝑛 ∈ ℕ 𝐴 = ran (𝑛 ∈ ℕ ↦ 𝐴))
4544fveq2d 6910 . 2 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = (vol‘ ran (𝑛 ∈ ℕ ↦ 𝐴)))
46 voliun.1 . . . . 5 𝑆 = seq1( + , 𝐺)
47 voliun.2 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘𝐴))
48 eqid 2734 . . . . . . . 8 ℕ = ℕ
4926adantrr 717 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ)) → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴))
5049ralimiaa 3079 . . . . . . . . 9 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴))
5150adantr 480 . . . . . . . 8 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴))
52 mpteq12 5239 . . . . . . . 8 ((ℕ = ℕ ∧ ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴)) → (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘𝐴)))
5348, 51, 52sylancr 587 . . . . . . 7 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘𝐴)))
5447, 53eqtr4id 2793 . . . . . 6 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))))
5554seqeq3d 14046 . . . . 5 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))))
5646, 55eqtrid 2786 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → 𝑆 = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))))
5756rneqd 5951 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ran 𝑆 = ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))))
5857supeq1d 9483 . 2 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))), ℝ*, < ))
5939, 45, 583eqtr4d 2784 1 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  {cab 2711  wral 3058  wrex 3067  cin 3961   cuni 4911   ciun 4995  Disj wdisj 5114  cmpt 5230  dom cdm 5688  ran crn 5689  wf 6558  cfv 6562  supcsup 9477  cr 11151  1c1 11153   + caddc 11155  *cxr 11291   < clt 11292  cn 12263  seqcseq 14038  vol*covol 25510  volcvol 25511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xadd 13152  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-xmet 21374  df-met 21375  df-ovol 25512  df-vol 25513
This theorem is referenced by:  volsup  25604  vitalilem4  25659  voliune  34209  voliunsge0lem  46427
  Copyright terms: Public domain W3C validator