Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjprsn | Structured version Visualization version GIF version |
Description: The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021.) |
Ref | Expression |
---|---|
disjprsn | ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4578 | . . 3 ⊢ {𝐶} = {𝐶, 𝐶} | |
2 | 1 | ineq2i 4149 | . 2 ⊢ ({𝐴, 𝐵} ∩ {𝐶}) = ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) |
3 | disjpr2 4653 | . . 3 ⊢ (((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅) | |
4 | 3 | anidms 568 | . 2 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅) |
5 | 2, 4 | eqtrid 2788 | 1 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ≠ wne 2941 ∩ cin 3891 ∅c0 4262 {csn 4565 {cpr 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-sn 4566 df-pr 4568 |
This theorem is referenced by: disjtpsn 4655 disjtp2 4656 diftpsn3 4741 funtpg 6518 funcnvtp 6526 prodtp 31190 |
Copyright terms: Public domain | W3C validator |