Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjprsn | Structured version Visualization version GIF version |
Description: The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021.) |
Ref | Expression |
---|---|
disjprsn | ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4579 | . . 3 ⊢ {𝐶} = {𝐶, 𝐶} | |
2 | 1 | ineq2i 4148 | . 2 ⊢ ({𝐴, 𝐵} ∩ {𝐶}) = ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) |
3 | disjpr2 4654 | . . 3 ⊢ (((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅) | |
4 | 3 | anidms 566 | . 2 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅) |
5 | 2, 4 | eqtrid 2791 | 1 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ≠ wne 2944 ∩ cin 3890 ∅c0 4261 {csn 4566 {cpr 4568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-sn 4567 df-pr 4569 |
This theorem is referenced by: disjtpsn 4656 disjtp2 4657 diftpsn3 4740 funtpg 6485 funcnvtp 6493 prodtp 31120 |
Copyright terms: Public domain | W3C validator |