![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjprsn | Structured version Visualization version GIF version |
Description: The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021.) |
Ref | Expression |
---|---|
disjprsn | ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4642 | . . 3 ⊢ {𝐶} = {𝐶, 𝐶} | |
2 | 1 | ineq2i 4210 | . 2 ⊢ ({𝐴, 𝐵} ∩ {𝐶}) = ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) |
3 | disjpr2 4718 | . . 3 ⊢ (((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅) | |
4 | 3 | anidms 568 | . 2 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅) |
5 | 2, 4 | eqtrid 2785 | 1 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ≠ wne 2941 ∩ cin 3948 ∅c0 4323 {csn 4629 {cpr 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-sn 4630 df-pr 4632 |
This theorem is referenced by: disjtpsn 4720 disjtp2 4721 diftpsn3 4806 funtpg 6604 funcnvtp 6612 prodtp 32033 |
Copyright terms: Public domain | W3C validator |