MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjprsn Structured version   Visualization version   GIF version

Theorem disjprsn 4652
Description: The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
disjprsn ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)

Proof of Theorem disjprsn
StepHypRef Expression
1 dfsn2 4576 . . 3 {𝐶} = {𝐶, 𝐶}
21ineq2i 4145 . 2 ({𝐴, 𝐵} ∩ {𝐶}) = ({𝐴, 𝐵} ∩ {𝐶, 𝐶})
3 disjpr2 4651 . . 3 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅)
43anidms 567 . 2 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅)
52, 4eqtrid 2790 1 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wne 2943  cin 3887  c0 4258  {csn 4563  {cpr 4565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rab 3073  df-v 3433  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-sn 4564  df-pr 4566
This theorem is referenced by:  disjtpsn  4653  disjtp2  4654  diftpsn3  4737  funtpg  6491  funcnvtp  6499  prodtp  31138
  Copyright terms: Public domain W3C validator