MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjprsn Structured version   Visualization version   GIF version

Theorem disjprsn 4655
Description: The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
disjprsn ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)

Proof of Theorem disjprsn
StepHypRef Expression
1 dfsn2 4579 . . 3 {𝐶} = {𝐶, 𝐶}
21ineq2i 4148 . 2 ({𝐴, 𝐵} ∩ {𝐶}) = ({𝐴, 𝐵} ∩ {𝐶, 𝐶})
3 disjpr2 4654 . . 3 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅)
43anidms 566 . 2 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅)
52, 4eqtrid 2791 1 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wne 2944  cin 3890  c0 4261  {csn 4566  {cpr 4568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-sn 4567  df-pr 4569
This theorem is referenced by:  disjtpsn  4656  disjtp2  4657  diftpsn3  4740  funtpg  6485  funcnvtp  6493  prodtp  31120
  Copyright terms: Public domain W3C validator