MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjprsn Structured version   Visualization version   GIF version

Theorem disjprsn 4723
Description: The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
disjprsn ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)

Proof of Theorem disjprsn
StepHypRef Expression
1 dfsn2 4645 . . 3 {𝐶} = {𝐶, 𝐶}
21ineq2i 4211 . 2 ({𝐴, 𝐵} ∩ {𝐶}) = ({𝐴, 𝐵} ∩ {𝐶, 𝐶})
3 disjpr2 4722 . . 3 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅)
43anidms 565 . 2 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅)
52, 4eqtrid 2780 1 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wne 2937  cin 3948  c0 4326  {csn 4632  {cpr 4634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-sn 4633  df-pr 4635
This theorem is referenced by:  disjtpsn  4724  disjtp2  4725  diftpsn3  4810  funtpg  6613  funcnvtp  6621  prodtp  32611
  Copyright terms: Public domain W3C validator