| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjprsn | Structured version Visualization version GIF version | ||
| Description: The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021.) |
| Ref | Expression |
|---|---|
| disjprsn | ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4588 | . . 3 ⊢ {𝐶} = {𝐶, 𝐶} | |
| 2 | 1 | ineq2i 4166 | . 2 ⊢ ({𝐴, 𝐵} ∩ {𝐶}) = ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) |
| 3 | disjpr2 4665 | . . 3 ⊢ (((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅) | |
| 4 | 3 | anidms 566 | . 2 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅) |
| 5 | 2, 4 | eqtrid 2780 | 1 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ≠ wne 2929 ∩ cin 3897 ∅c0 4282 {csn 4575 {cpr 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-sn 4576 df-pr 4578 |
| This theorem is referenced by: disjtpsn 4667 disjtp2 4668 diftpsn3 4753 funtpg 6541 funcnvtp 6549 hash3tpexb 14403 prodtp 32815 gsumtp 33045 |
| Copyright terms: Public domain | W3C validator |