MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjprsn Structured version   Visualization version   GIF version

Theorem disjprsn 4681
Description: The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
disjprsn ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)

Proof of Theorem disjprsn
StepHypRef Expression
1 dfsn2 4605 . . 3 {𝐶} = {𝐶, 𝐶}
21ineq2i 4183 . 2 ({𝐴, 𝐵} ∩ {𝐶}) = ({𝐴, 𝐵} ∩ {𝐶, 𝐶})
3 disjpr2 4680 . . 3 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅)
43anidms 566 . 2 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅)
52, 4eqtrid 2777 1 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wne 2926  cin 3916  c0 4299  {csn 4592  {cpr 4594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-sn 4593  df-pr 4595
This theorem is referenced by:  disjtpsn  4682  disjtp2  4683  diftpsn3  4769  funtpg  6574  funcnvtp  6582  hash3tpexb  14466  prodtp  32759  gsumtp  33005
  Copyright terms: Public domain W3C validator