MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjprsn Structured version   Visualization version   GIF version

Theorem disjprsn 4386
Description: The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
disjprsn ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)

Proof of Theorem disjprsn
StepHypRef Expression
1 dfsn2 4329 . . 3 {𝐶} = {𝐶, 𝐶}
21ineq2i 3962 . 2 ({𝐴, 𝐵} ∩ {𝐶}) = ({𝐴, 𝐵} ∩ {𝐶, 𝐶})
3 disjpr2 4385 . . 3 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅)
43anidms 556 . 2 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅)
52, 4syl5eq 2817 1 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wne 2943  cin 3722  c0 4063  {csn 4316  {cpr 4318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-sn 4317  df-pr 4319
This theorem is referenced by:  disjtpsn  4387  disjtp2  4388  diftpsn3  4468  funtpg  6082  funcnvtp  6090  prodtp  29906
  Copyright terms: Public domain W3C validator