| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjprsn | Structured version Visualization version GIF version | ||
| Description: The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021.) |
| Ref | Expression |
|---|---|
| disjprsn | ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4614 | . . 3 ⊢ {𝐶} = {𝐶, 𝐶} | |
| 2 | 1 | ineq2i 4192 | . 2 ⊢ ({𝐴, 𝐵} ∩ {𝐶}) = ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) |
| 3 | disjpr2 4689 | . . 3 ⊢ (((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅) | |
| 4 | 3 | anidms 566 | . 2 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶, 𝐶}) = ∅) |
| 5 | 2, 4 | eqtrid 2782 | 1 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2932 ∩ cin 3925 ∅c0 4308 {csn 4601 {cpr 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-sn 4602 df-pr 4604 |
| This theorem is referenced by: disjtpsn 4691 disjtp2 4692 diftpsn3 4778 funtpg 6591 funcnvtp 6599 hash3tpexb 14512 prodtp 32806 gsumtp 33052 |
| Copyright terms: Public domain | W3C validator |