MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvtp Structured version   Visualization version   GIF version

Theorem funcnvtp 6615
Description: The converse triple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
funcnvtp (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩})

Proof of Theorem funcnvtp
StepHypRef Expression
1 simp1 1133 . . . 4 ((𝐴𝑈𝐶𝑉𝐸𝑊) → 𝐴𝑈)
2 simp2 1134 . . . 4 ((𝐴𝑈𝐶𝑉𝐸𝑊) → 𝐶𝑉)
3 simp1 1133 . . . 4 ((𝐵𝐷𝐵𝐹𝐷𝐹) → 𝐵𝐷)
4 funcnvpr 6614 . . . 4 ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
51, 2, 3, 4syl2an3an 1419 . . 3 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
6 funcnvsn 6602 . . . 4 Fun {⟨𝐸, 𝐹⟩}
76a1i 11 . . 3 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐸, 𝐹⟩})
8 df-rn 5688 . . . . . . 7 ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}
9 rnpropg 6226 . . . . . . 7 ((𝐴𝑈𝐶𝑉) → ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
108, 9eqtr3id 2779 . . . . . 6 ((𝐴𝑈𝐶𝑉) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
11103adant3 1129 . . . . 5 ((𝐴𝑈𝐶𝑉𝐸𝑊) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
12 df-rn 5688 . . . . . . 7 ran {⟨𝐸, 𝐹⟩} = dom {⟨𝐸, 𝐹⟩}
13 rnsnopg 6225 . . . . . . 7 (𝐸𝑊 → ran {⟨𝐸, 𝐹⟩} = {𝐹})
1412, 13eqtr3id 2779 . . . . . 6 (𝐸𝑊 → dom {⟨𝐸, 𝐹⟩} = {𝐹})
15143ad2ant3 1132 . . . . 5 ((𝐴𝑈𝐶𝑉𝐸𝑊) → dom {⟨𝐸, 𝐹⟩} = {𝐹})
1611, 15ineq12d 4212 . . . 4 ((𝐴𝑈𝐶𝑉𝐸𝑊) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩}) = ({𝐵, 𝐷} ∩ {𝐹}))
17 disjprsn 4719 . . . . 5 ((𝐵𝐹𝐷𝐹) → ({𝐵, 𝐷} ∩ {𝐹}) = ∅)
18173adant1 1127 . . . 4 ((𝐵𝐷𝐵𝐹𝐷𝐹) → ({𝐵, 𝐷} ∩ {𝐹}) = ∅)
1916, 18sylan9eq 2785 . . 3 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩}) = ∅)
20 funun 6598 . . 3 (((Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∧ Fun {⟨𝐸, 𝐹⟩}) ∧ (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩}) = ∅) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}))
215, 7, 19, 20syl21anc 836 . 2 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}))
22 df-tp 4634 . . . . 5 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
2322cnveqi 5876 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
24 cnvun 6147 . . . 4 ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}) = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
2523, 24eqtri 2753 . . 3 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
2625funeqi 6573 . 2 (Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} ↔ Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}))
2721, 26sylibr 233 1 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2930  cun 3943  cin 3944  c0 4323  {csn 4629  {cpr 4631  {ctp 4633  cop 4635  ccnv 5676  dom cdm 5677  ran crn 5678  Fun wfun 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-br 5149  df-opab 5211  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-fun 6549
This theorem is referenced by:  funcnvs3  14897
  Copyright terms: Public domain W3C validator