MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvtp Structured version   Visualization version   GIF version

Theorem funcnvtp 6493
Description: The converse triple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
funcnvtp (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩})

Proof of Theorem funcnvtp
StepHypRef Expression
1 simp1 1134 . . . 4 ((𝐴𝑈𝐶𝑉𝐸𝑊) → 𝐴𝑈)
2 simp2 1135 . . . 4 ((𝐴𝑈𝐶𝑉𝐸𝑊) → 𝐶𝑉)
3 simp1 1134 . . . 4 ((𝐵𝐷𝐵𝐹𝐷𝐹) → 𝐵𝐷)
4 funcnvpr 6492 . . . 4 ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
51, 2, 3, 4syl2an3an 1420 . . 3 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
6 funcnvsn 6480 . . . 4 Fun {⟨𝐸, 𝐹⟩}
76a1i 11 . . 3 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐸, 𝐹⟩})
8 df-rn 5599 . . . . . . 7 ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}
9 rnpropg 6122 . . . . . . 7 ((𝐴𝑈𝐶𝑉) → ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
108, 9eqtr3id 2793 . . . . . 6 ((𝐴𝑈𝐶𝑉) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
11103adant3 1130 . . . . 5 ((𝐴𝑈𝐶𝑉𝐸𝑊) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
12 df-rn 5599 . . . . . . 7 ran {⟨𝐸, 𝐹⟩} = dom {⟨𝐸, 𝐹⟩}
13 rnsnopg 6121 . . . . . . 7 (𝐸𝑊 → ran {⟨𝐸, 𝐹⟩} = {𝐹})
1412, 13eqtr3id 2793 . . . . . 6 (𝐸𝑊 → dom {⟨𝐸, 𝐹⟩} = {𝐹})
15143ad2ant3 1133 . . . . 5 ((𝐴𝑈𝐶𝑉𝐸𝑊) → dom {⟨𝐸, 𝐹⟩} = {𝐹})
1611, 15ineq12d 4152 . . . 4 ((𝐴𝑈𝐶𝑉𝐸𝑊) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩}) = ({𝐵, 𝐷} ∩ {𝐹}))
17 disjprsn 4655 . . . . 5 ((𝐵𝐹𝐷𝐹) → ({𝐵, 𝐷} ∩ {𝐹}) = ∅)
18173adant1 1128 . . . 4 ((𝐵𝐷𝐵𝐹𝐷𝐹) → ({𝐵, 𝐷} ∩ {𝐹}) = ∅)
1916, 18sylan9eq 2799 . . 3 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩}) = ∅)
20 funun 6476 . . 3 (((Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∧ Fun {⟨𝐸, 𝐹⟩}) ∧ (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩}) = ∅) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}))
215, 7, 19, 20syl21anc 834 . 2 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}))
22 df-tp 4571 . . . . 5 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
2322cnveqi 5780 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
24 cnvun 6043 . . . 4 ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}) = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
2523, 24eqtri 2767 . . 3 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
2625funeqi 6451 . 2 (Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} ↔ Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}))
2721, 26sylibr 233 1 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  cun 3889  cin 3890  c0 4261  {csn 4566  {cpr 4568  {ctp 4570  cop 4572  ccnv 5587  dom cdm 5588  ran crn 5589  Fun wfun 6424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-fun 6432
This theorem is referenced by:  funcnvs3  14608
  Copyright terms: Public domain W3C validator