MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvtp Structured version   Visualization version   GIF version

Theorem funcnvtp 6629
Description: The converse triple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
funcnvtp (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩})

Proof of Theorem funcnvtp
StepHypRef Expression
1 simp1 1137 . . . 4 ((𝐴𝑈𝐶𝑉𝐸𝑊) → 𝐴𝑈)
2 simp2 1138 . . . 4 ((𝐴𝑈𝐶𝑉𝐸𝑊) → 𝐶𝑉)
3 simp1 1137 . . . 4 ((𝐵𝐷𝐵𝐹𝐷𝐹) → 𝐵𝐷)
4 funcnvpr 6628 . . . 4 ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
51, 2, 3, 4syl2an3an 1424 . . 3 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
6 funcnvsn 6616 . . . 4 Fun {⟨𝐸, 𝐹⟩}
76a1i 11 . . 3 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐸, 𝐹⟩})
8 df-rn 5696 . . . . . . 7 ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}
9 rnpropg 6242 . . . . . . 7 ((𝐴𝑈𝐶𝑉) → ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
108, 9eqtr3id 2791 . . . . . 6 ((𝐴𝑈𝐶𝑉) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
11103adant3 1133 . . . . 5 ((𝐴𝑈𝐶𝑉𝐸𝑊) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
12 df-rn 5696 . . . . . . 7 ran {⟨𝐸, 𝐹⟩} = dom {⟨𝐸, 𝐹⟩}
13 rnsnopg 6241 . . . . . . 7 (𝐸𝑊 → ran {⟨𝐸, 𝐹⟩} = {𝐹})
1412, 13eqtr3id 2791 . . . . . 6 (𝐸𝑊 → dom {⟨𝐸, 𝐹⟩} = {𝐹})
15143ad2ant3 1136 . . . . 5 ((𝐴𝑈𝐶𝑉𝐸𝑊) → dom {⟨𝐸, 𝐹⟩} = {𝐹})
1611, 15ineq12d 4221 . . . 4 ((𝐴𝑈𝐶𝑉𝐸𝑊) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩}) = ({𝐵, 𝐷} ∩ {𝐹}))
17 disjprsn 4714 . . . . 5 ((𝐵𝐹𝐷𝐹) → ({𝐵, 𝐷} ∩ {𝐹}) = ∅)
18173adant1 1131 . . . 4 ((𝐵𝐷𝐵𝐹𝐷𝐹) → ({𝐵, 𝐷} ∩ {𝐹}) = ∅)
1916, 18sylan9eq 2797 . . 3 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩}) = ∅)
20 funun 6612 . . 3 (((Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∧ Fun {⟨𝐸, 𝐹⟩}) ∧ (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩}) = ∅) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}))
215, 7, 19, 20syl21anc 838 . 2 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}))
22 df-tp 4631 . . . . 5 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
2322cnveqi 5885 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
24 cnvun 6162 . . . 4 ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}) = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
2523, 24eqtri 2765 . . 3 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩})
2625funeqi 6587 . 2 (Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} ↔ Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩}))
2721, 26sylibr 234 1 (((𝐴𝑈𝐶𝑉𝐸𝑊) ∧ (𝐵𝐷𝐵𝐹𝐷𝐹)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  cun 3949  cin 3950  c0 4333  {csn 4626  {cpr 4628  {ctp 4630  cop 4632  ccnv 5684  dom cdm 5685  ran crn 5686  Fun wfun 6555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-fun 6563
This theorem is referenced by:  funcnvs3  14953
  Copyright terms: Public domain W3C validator