Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodtp Structured version   Visualization version   GIF version

Theorem prodtp 32808
Description: A product over a triple is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
prodpr.1 (𝑘 = 𝐴𝐷 = 𝐸)
prodpr.2 (𝑘 = 𝐵𝐷 = 𝐹)
prodpr.a (𝜑𝐴𝑉)
prodpr.b (𝜑𝐵𝑊)
prodpr.e (𝜑𝐸 ∈ ℂ)
prodpr.f (𝜑𝐹 ∈ ℂ)
prodpr.3 (𝜑𝐴𝐵)
prodtp.1 (𝑘 = 𝐶𝐷 = 𝐺)
prodtp.c (𝜑𝐶𝑋)
prodtp.g (𝜑𝐺 ∈ ℂ)
prodtp.2 (𝜑𝐴𝐶)
prodtp.3 (𝜑𝐵𝐶)
Assertion
Ref Expression
prodtp (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 · 𝐹) · 𝐺))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝑘,𝐸   𝑘,𝐹   𝑘,𝐺   𝑘,𝑉   𝑘,𝑊   𝑘,𝑋   𝜑,𝑘
Allowed substitution hint:   𝐷(𝑘)

Proof of Theorem prodtp
StepHypRef Expression
1 prodtp.2 . . . 4 (𝜑𝐴𝐶)
2 prodtp.3 . . . 4 (𝜑𝐵𝐶)
3 disjprsn 4667 . . . 4 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
41, 2, 3syl2anc 584 . . 3 (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
5 df-tp 4581 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
65a1i 11 . . 3 (𝜑 → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}))
7 tpfi 9210 . . . 4 {𝐴, 𝐵, 𝐶} ∈ Fin
87a1i 11 . . 3 (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin)
9 vex 3440 . . . . 5 𝑘 ∈ V
109eltp 4642 . . . 4 (𝑘 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶))
11 prodpr.1 . . . . . . . 8 (𝑘 = 𝐴𝐷 = 𝐸)
1211adantl 481 . . . . . . 7 ((𝜑𝑘 = 𝐴) → 𝐷 = 𝐸)
13 prodpr.e . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
1413adantr 480 . . . . . . 7 ((𝜑𝑘 = 𝐴) → 𝐸 ∈ ℂ)
1512, 14eqeltrd 2831 . . . . . 6 ((𝜑𝑘 = 𝐴) → 𝐷 ∈ ℂ)
1615adantlr 715 . . . . 5 (((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) ∧ 𝑘 = 𝐴) → 𝐷 ∈ ℂ)
17 prodpr.2 . . . . . . . 8 (𝑘 = 𝐵𝐷 = 𝐹)
1817adantl 481 . . . . . . 7 ((𝜑𝑘 = 𝐵) → 𝐷 = 𝐹)
19 prodpr.f . . . . . . . 8 (𝜑𝐹 ∈ ℂ)
2019adantr 480 . . . . . . 7 ((𝜑𝑘 = 𝐵) → 𝐹 ∈ ℂ)
2118, 20eqeltrd 2831 . . . . . 6 ((𝜑𝑘 = 𝐵) → 𝐷 ∈ ℂ)
2221adantlr 715 . . . . 5 (((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) ∧ 𝑘 = 𝐵) → 𝐷 ∈ ℂ)
23 prodtp.1 . . . . . . . 8 (𝑘 = 𝐶𝐷 = 𝐺)
2423adantl 481 . . . . . . 7 ((𝜑𝑘 = 𝐶) → 𝐷 = 𝐺)
25 prodtp.g . . . . . . . 8 (𝜑𝐺 ∈ ℂ)
2625adantr 480 . . . . . . 7 ((𝜑𝑘 = 𝐶) → 𝐺 ∈ ℂ)
2724, 26eqeltrd 2831 . . . . . 6 ((𝜑𝑘 = 𝐶) → 𝐷 ∈ ℂ)
2827adantlr 715 . . . . 5 (((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) ∧ 𝑘 = 𝐶) → 𝐷 ∈ ℂ)
29 simpr 484 . . . . 5 ((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) → (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶))
3016, 22, 28, 29mpjao3dan 1434 . . . 4 ((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) → 𝐷 ∈ ℂ)
3110, 30sylan2b 594 . . 3 ((𝜑𝑘 ∈ {𝐴, 𝐵, 𝐶}) → 𝐷 ∈ ℂ)
324, 6, 8, 31fprodsplit 15873 . 2 (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = (∏𝑘 ∈ {𝐴, 𝐵}𝐷 · ∏𝑘 ∈ {𝐶}𝐷))
33 prodpr.a . . . 4 (𝜑𝐴𝑉)
34 prodpr.b . . . 4 (𝜑𝐵𝑊)
35 prodpr.3 . . . 4 (𝜑𝐴𝐵)
3611, 17, 33, 34, 13, 19, 35prodpr 32807 . . 3 (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 · 𝐹))
37 prodtp.c . . . 4 (𝜑𝐶𝑋)
3823prodsn 15869 . . . 4 ((𝐶𝑋𝐺 ∈ ℂ) → ∏𝑘 ∈ {𝐶}𝐷 = 𝐺)
3937, 25, 38syl2anc 584 . . 3 (𝜑 → ∏𝑘 ∈ {𝐶}𝐷 = 𝐺)
4036, 39oveq12d 7364 . 2 (𝜑 → (∏𝑘 ∈ {𝐴, 𝐵}𝐷 · ∏𝑘 ∈ {𝐶}𝐷) = ((𝐸 · 𝐹) · 𝐺))
4132, 40eqtrd 2766 1 (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 · 𝐹) · 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1541  wcel 2111  wne 2928  cun 3900  cin 3901  c0 4283  {csn 4576  {cpr 4578  {ctp 4580  (class class class)co 7346  Fincfn 8869  cc 11004   · cmul 11011  cprod 15810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-prod 15811
This theorem is referenced by:  hgt750lemg  34665
  Copyright terms: Public domain W3C validator