Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prodtp | Structured version Visualization version GIF version |
Description: A product over a triple is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
Ref | Expression |
---|---|
prodpr.1 | ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) |
prodpr.2 | ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) |
prodpr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
prodpr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
prodpr.e | ⊢ (𝜑 → 𝐸 ∈ ℂ) |
prodpr.f | ⊢ (𝜑 → 𝐹 ∈ ℂ) |
prodpr.3 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
prodtp.1 | ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺) |
prodtp.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
prodtp.g | ⊢ (𝜑 → 𝐺 ∈ ℂ) |
prodtp.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
prodtp.3 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Ref | Expression |
---|---|
prodtp | ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 · 𝐹) · 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodtp.2 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
2 | prodtp.3 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
3 | disjprsn 4647 | . . . 4 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) | |
4 | 1, 2, 3 | syl2anc 583 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
5 | df-tp 4563 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})) |
7 | tpfi 9020 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} ∈ Fin | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
9 | vex 3426 | . . . . 5 ⊢ 𝑘 ∈ V | |
10 | 9 | eltp 4621 | . . . 4 ⊢ (𝑘 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶)) |
11 | prodpr.1 | . . . . . . . 8 ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) | |
12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐷 = 𝐸) |
13 | prodpr.e | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ ℂ) | |
14 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐸 ∈ ℂ) |
15 | 12, 14 | eqeltrd 2839 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐷 ∈ ℂ) |
16 | 15 | adantlr 711 | . . . . 5 ⊢ (((𝜑 ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶)) ∧ 𝑘 = 𝐴) → 𝐷 ∈ ℂ) |
17 | prodpr.2 | . . . . . . . 8 ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) | |
18 | 17 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐷 = 𝐹) |
19 | prodpr.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ ℂ) | |
20 | 19 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐹 ∈ ℂ) |
21 | 18, 20 | eqeltrd 2839 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐷 ∈ ℂ) |
22 | 21 | adantlr 711 | . . . . 5 ⊢ (((𝜑 ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶)) ∧ 𝑘 = 𝐵) → 𝐷 ∈ ℂ) |
23 | prodtp.1 | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺) | |
24 | 23 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐷 = 𝐺) |
25 | prodtp.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ ℂ) | |
26 | 25 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐺 ∈ ℂ) |
27 | 24, 26 | eqeltrd 2839 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐷 ∈ ℂ) |
28 | 27 | adantlr 711 | . . . . 5 ⊢ (((𝜑 ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶)) ∧ 𝑘 = 𝐶) → 𝐷 ∈ ℂ) |
29 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶)) → (𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶)) | |
30 | 16, 22, 28, 29 | mpjao3dan 1429 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶)) → 𝐷 ∈ ℂ) |
31 | 10, 30 | sylan2b 593 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵, 𝐶}) → 𝐷 ∈ ℂ) |
32 | 4, 6, 8, 31 | fprodsplit 15604 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = (∏𝑘 ∈ {𝐴, 𝐵}𝐷 · ∏𝑘 ∈ {𝐶}𝐷)) |
33 | prodpr.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
34 | prodpr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
35 | prodpr.3 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
36 | 11, 17, 33, 34, 13, 19, 35 | prodpr 31042 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 · 𝐹)) |
37 | prodtp.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
38 | 23 | prodsn 15600 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐺 ∈ ℂ) → ∏𝑘 ∈ {𝐶}𝐷 = 𝐺) |
39 | 37, 25, 38 | syl2anc 583 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐶}𝐷 = 𝐺) |
40 | 36, 39 | oveq12d 7273 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ {𝐴, 𝐵}𝐷 · ∏𝑘 ∈ {𝐶}𝐷) = ((𝐸 · 𝐹) · 𝐺)) |
41 | 32, 40 | eqtrd 2778 | 1 ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 · 𝐹) · 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1084 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 {csn 4558 {cpr 4560 {ctp 4562 (class class class)co 7255 Fincfn 8691 ℂcc 10800 · cmul 10807 ∏cprod 15543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-prod 15544 |
This theorem is referenced by: hgt750lemg 32534 |
Copyright terms: Public domain | W3C validator |