Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prodtp | Structured version Visualization version GIF version |
Description: A product over a triple is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
Ref | Expression |
---|---|
prodpr.1 | ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) |
prodpr.2 | ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) |
prodpr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
prodpr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
prodpr.e | ⊢ (𝜑 → 𝐸 ∈ ℂ) |
prodpr.f | ⊢ (𝜑 → 𝐹 ∈ ℂ) |
prodpr.3 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
prodtp.1 | ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺) |
prodtp.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
prodtp.g | ⊢ (𝜑 → 𝐺 ∈ ℂ) |
prodtp.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
prodtp.3 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Ref | Expression |
---|---|
prodtp | ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 · 𝐹) · 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodtp.2 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
2 | prodtp.3 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
3 | disjprsn 4650 | . . . 4 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) | |
4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
5 | df-tp 4566 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})) |
7 | tpfi 9090 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} ∈ Fin | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
9 | vex 3436 | . . . . 5 ⊢ 𝑘 ∈ V | |
10 | 9 | eltp 4624 | . . . 4 ⊢ (𝑘 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶)) |
11 | prodpr.1 | . . . . . . . 8 ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) | |
12 | 11 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐷 = 𝐸) |
13 | prodpr.e | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ ℂ) | |
14 | 13 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐸 ∈ ℂ) |
15 | 12, 14 | eqeltrd 2839 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐷 ∈ ℂ) |
16 | 15 | adantlr 712 | . . . . 5 ⊢ (((𝜑 ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶)) ∧ 𝑘 = 𝐴) → 𝐷 ∈ ℂ) |
17 | prodpr.2 | . . . . . . . 8 ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) | |
18 | 17 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐷 = 𝐹) |
19 | prodpr.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ ℂ) | |
20 | 19 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐹 ∈ ℂ) |
21 | 18, 20 | eqeltrd 2839 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐷 ∈ ℂ) |
22 | 21 | adantlr 712 | . . . . 5 ⊢ (((𝜑 ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶)) ∧ 𝑘 = 𝐵) → 𝐷 ∈ ℂ) |
23 | prodtp.1 | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺) | |
24 | 23 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐷 = 𝐺) |
25 | prodtp.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ ℂ) | |
26 | 25 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐺 ∈ ℂ) |
27 | 24, 26 | eqeltrd 2839 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐷 ∈ ℂ) |
28 | 27 | adantlr 712 | . . . . 5 ⊢ (((𝜑 ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶)) ∧ 𝑘 = 𝐶) → 𝐷 ∈ ℂ) |
29 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶)) → (𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶)) | |
30 | 16, 22, 28, 29 | mpjao3dan 1430 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶)) → 𝐷 ∈ ℂ) |
31 | 10, 30 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵, 𝐶}) → 𝐷 ∈ ℂ) |
32 | 4, 6, 8, 31 | fprodsplit 15676 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = (∏𝑘 ∈ {𝐴, 𝐵}𝐷 · ∏𝑘 ∈ {𝐶}𝐷)) |
33 | prodpr.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
34 | prodpr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
35 | prodpr.3 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
36 | 11, 17, 33, 34, 13, 19, 35 | prodpr 31140 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 · 𝐹)) |
37 | prodtp.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
38 | 23 | prodsn 15672 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐺 ∈ ℂ) → ∏𝑘 ∈ {𝐶}𝐷 = 𝐺) |
39 | 37, 25, 38 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐶}𝐷 = 𝐺) |
40 | 36, 39 | oveq12d 7293 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ {𝐴, 𝐵}𝐷 · ∏𝑘 ∈ {𝐶}𝐷) = ((𝐸 · 𝐹) · 𝐺)) |
41 | 32, 40 | eqtrd 2778 | 1 ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 · 𝐹) · 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ w3o 1085 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 {csn 4561 {cpr 4563 {ctp 4565 (class class class)co 7275 Fincfn 8733 ℂcc 10869 · cmul 10876 ∏cprod 15615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-prod 15616 |
This theorem is referenced by: hgt750lemg 32634 |
Copyright terms: Public domain | W3C validator |