Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodtp Structured version   Visualization version   GIF version

Theorem prodtp 30569
Description: A product over a triple is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
prodpr.1 (𝑘 = 𝐴𝐷 = 𝐸)
prodpr.2 (𝑘 = 𝐵𝐷 = 𝐹)
prodpr.a (𝜑𝐴𝑉)
prodpr.b (𝜑𝐵𝑊)
prodpr.e (𝜑𝐸 ∈ ℂ)
prodpr.f (𝜑𝐹 ∈ ℂ)
prodpr.3 (𝜑𝐴𝐵)
prodtp.1 (𝑘 = 𝐶𝐷 = 𝐺)
prodtp.c (𝜑𝐶𝑋)
prodtp.g (𝜑𝐺 ∈ ℂ)
prodtp.2 (𝜑𝐴𝐶)
prodtp.3 (𝜑𝐵𝐶)
Assertion
Ref Expression
prodtp (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 · 𝐹) · 𝐺))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝑘,𝐸   𝑘,𝐹   𝑘,𝐺   𝑘,𝑉   𝑘,𝑊   𝑘,𝑋   𝜑,𝑘
Allowed substitution hint:   𝐷(𝑘)

Proof of Theorem prodtp
StepHypRef Expression
1 prodtp.2 . . . 4 (𝜑𝐴𝐶)
2 prodtp.3 . . . 4 (𝜑𝐵𝐶)
3 disjprsn 4610 . . . 4 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
41, 2, 3syl2anc 587 . . 3 (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
5 df-tp 4530 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
65a1i 11 . . 3 (𝜑 → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}))
7 tpfi 8778 . . . 4 {𝐴, 𝐵, 𝐶} ∈ Fin
87a1i 11 . . 3 (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin)
9 vex 3444 . . . . 5 𝑘 ∈ V
109eltp 4586 . . . 4 (𝑘 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶))
11 prodpr.1 . . . . . . . 8 (𝑘 = 𝐴𝐷 = 𝐸)
1211adantl 485 . . . . . . 7 ((𝜑𝑘 = 𝐴) → 𝐷 = 𝐸)
13 prodpr.e . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
1413adantr 484 . . . . . . 7 ((𝜑𝑘 = 𝐴) → 𝐸 ∈ ℂ)
1512, 14eqeltrd 2890 . . . . . 6 ((𝜑𝑘 = 𝐴) → 𝐷 ∈ ℂ)
1615adantlr 714 . . . . 5 (((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) ∧ 𝑘 = 𝐴) → 𝐷 ∈ ℂ)
17 prodpr.2 . . . . . . . 8 (𝑘 = 𝐵𝐷 = 𝐹)
1817adantl 485 . . . . . . 7 ((𝜑𝑘 = 𝐵) → 𝐷 = 𝐹)
19 prodpr.f . . . . . . . 8 (𝜑𝐹 ∈ ℂ)
2019adantr 484 . . . . . . 7 ((𝜑𝑘 = 𝐵) → 𝐹 ∈ ℂ)
2118, 20eqeltrd 2890 . . . . . 6 ((𝜑𝑘 = 𝐵) → 𝐷 ∈ ℂ)
2221adantlr 714 . . . . 5 (((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) ∧ 𝑘 = 𝐵) → 𝐷 ∈ ℂ)
23 prodtp.1 . . . . . . . 8 (𝑘 = 𝐶𝐷 = 𝐺)
2423adantl 485 . . . . . . 7 ((𝜑𝑘 = 𝐶) → 𝐷 = 𝐺)
25 prodtp.g . . . . . . . 8 (𝜑𝐺 ∈ ℂ)
2625adantr 484 . . . . . . 7 ((𝜑𝑘 = 𝐶) → 𝐺 ∈ ℂ)
2724, 26eqeltrd 2890 . . . . . 6 ((𝜑𝑘 = 𝐶) → 𝐷 ∈ ℂ)
2827adantlr 714 . . . . 5 (((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) ∧ 𝑘 = 𝐶) → 𝐷 ∈ ℂ)
29 simpr 488 . . . . 5 ((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) → (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶))
3016, 22, 28, 29mpjao3dan 1428 . . . 4 ((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) → 𝐷 ∈ ℂ)
3110, 30sylan2b 596 . . 3 ((𝜑𝑘 ∈ {𝐴, 𝐵, 𝐶}) → 𝐷 ∈ ℂ)
324, 6, 8, 31fprodsplit 15312 . 2 (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = (∏𝑘 ∈ {𝐴, 𝐵}𝐷 · ∏𝑘 ∈ {𝐶}𝐷))
33 prodpr.a . . . 4 (𝜑𝐴𝑉)
34 prodpr.b . . . 4 (𝜑𝐵𝑊)
35 prodpr.3 . . . 4 (𝜑𝐴𝐵)
3611, 17, 33, 34, 13, 19, 35prodpr 30568 . . 3 (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 · 𝐹))
37 prodtp.c . . . 4 (𝜑𝐶𝑋)
3823prodsn 15308 . . . 4 ((𝐶𝑋𝐺 ∈ ℂ) → ∏𝑘 ∈ {𝐶}𝐷 = 𝐺)
3937, 25, 38syl2anc 587 . . 3 (𝜑 → ∏𝑘 ∈ {𝐶}𝐷 = 𝐺)
4036, 39oveq12d 7153 . 2 (𝜑 → (∏𝑘 ∈ {𝐴, 𝐵}𝐷 · ∏𝑘 ∈ {𝐶}𝐷) = ((𝐸 · 𝐹) · 𝐺))
4132, 40eqtrd 2833 1 (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 · 𝐹) · 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3o 1083   = wceq 1538  wcel 2111  wne 2987  cun 3879  cin 3880  c0 4243  {csn 4525  {cpr 4527  {ctp 4529  (class class class)co 7135  Fincfn 8492  cc 10524   · cmul 10531  cprod 15251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-prod 15252
This theorem is referenced by:  hgt750lemg  32035
  Copyright terms: Public domain W3C validator