Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodtp Structured version   Visualization version   GIF version

Theorem prodtp 31043
Description: A product over a triple is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
prodpr.1 (𝑘 = 𝐴𝐷 = 𝐸)
prodpr.2 (𝑘 = 𝐵𝐷 = 𝐹)
prodpr.a (𝜑𝐴𝑉)
prodpr.b (𝜑𝐵𝑊)
prodpr.e (𝜑𝐸 ∈ ℂ)
prodpr.f (𝜑𝐹 ∈ ℂ)
prodpr.3 (𝜑𝐴𝐵)
prodtp.1 (𝑘 = 𝐶𝐷 = 𝐺)
prodtp.c (𝜑𝐶𝑋)
prodtp.g (𝜑𝐺 ∈ ℂ)
prodtp.2 (𝜑𝐴𝐶)
prodtp.3 (𝜑𝐵𝐶)
Assertion
Ref Expression
prodtp (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 · 𝐹) · 𝐺))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝑘,𝐸   𝑘,𝐹   𝑘,𝐺   𝑘,𝑉   𝑘,𝑊   𝑘,𝑋   𝜑,𝑘
Allowed substitution hint:   𝐷(𝑘)

Proof of Theorem prodtp
StepHypRef Expression
1 prodtp.2 . . . 4 (𝜑𝐴𝐶)
2 prodtp.3 . . . 4 (𝜑𝐵𝐶)
3 disjprsn 4647 . . . 4 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
41, 2, 3syl2anc 583 . . 3 (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
5 df-tp 4563 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
65a1i 11 . . 3 (𝜑 → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}))
7 tpfi 9020 . . . 4 {𝐴, 𝐵, 𝐶} ∈ Fin
87a1i 11 . . 3 (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin)
9 vex 3426 . . . . 5 𝑘 ∈ V
109eltp 4621 . . . 4 (𝑘 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶))
11 prodpr.1 . . . . . . . 8 (𝑘 = 𝐴𝐷 = 𝐸)
1211adantl 481 . . . . . . 7 ((𝜑𝑘 = 𝐴) → 𝐷 = 𝐸)
13 prodpr.e . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
1413adantr 480 . . . . . . 7 ((𝜑𝑘 = 𝐴) → 𝐸 ∈ ℂ)
1512, 14eqeltrd 2839 . . . . . 6 ((𝜑𝑘 = 𝐴) → 𝐷 ∈ ℂ)
1615adantlr 711 . . . . 5 (((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) ∧ 𝑘 = 𝐴) → 𝐷 ∈ ℂ)
17 prodpr.2 . . . . . . . 8 (𝑘 = 𝐵𝐷 = 𝐹)
1817adantl 481 . . . . . . 7 ((𝜑𝑘 = 𝐵) → 𝐷 = 𝐹)
19 prodpr.f . . . . . . . 8 (𝜑𝐹 ∈ ℂ)
2019adantr 480 . . . . . . 7 ((𝜑𝑘 = 𝐵) → 𝐹 ∈ ℂ)
2118, 20eqeltrd 2839 . . . . . 6 ((𝜑𝑘 = 𝐵) → 𝐷 ∈ ℂ)
2221adantlr 711 . . . . 5 (((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) ∧ 𝑘 = 𝐵) → 𝐷 ∈ ℂ)
23 prodtp.1 . . . . . . . 8 (𝑘 = 𝐶𝐷 = 𝐺)
2423adantl 481 . . . . . . 7 ((𝜑𝑘 = 𝐶) → 𝐷 = 𝐺)
25 prodtp.g . . . . . . . 8 (𝜑𝐺 ∈ ℂ)
2625adantr 480 . . . . . . 7 ((𝜑𝑘 = 𝐶) → 𝐺 ∈ ℂ)
2724, 26eqeltrd 2839 . . . . . 6 ((𝜑𝑘 = 𝐶) → 𝐷 ∈ ℂ)
2827adantlr 711 . . . . 5 (((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) ∧ 𝑘 = 𝐶) → 𝐷 ∈ ℂ)
29 simpr 484 . . . . 5 ((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) → (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶))
3016, 22, 28, 29mpjao3dan 1429 . . . 4 ((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) → 𝐷 ∈ ℂ)
3110, 30sylan2b 593 . . 3 ((𝜑𝑘 ∈ {𝐴, 𝐵, 𝐶}) → 𝐷 ∈ ℂ)
324, 6, 8, 31fprodsplit 15604 . 2 (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = (∏𝑘 ∈ {𝐴, 𝐵}𝐷 · ∏𝑘 ∈ {𝐶}𝐷))
33 prodpr.a . . . 4 (𝜑𝐴𝑉)
34 prodpr.b . . . 4 (𝜑𝐵𝑊)
35 prodpr.3 . . . 4 (𝜑𝐴𝐵)
3611, 17, 33, 34, 13, 19, 35prodpr 31042 . . 3 (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 · 𝐹))
37 prodtp.c . . . 4 (𝜑𝐶𝑋)
3823prodsn 15600 . . . 4 ((𝐶𝑋𝐺 ∈ ℂ) → ∏𝑘 ∈ {𝐶}𝐷 = 𝐺)
3937, 25, 38syl2anc 583 . . 3 (𝜑 → ∏𝑘 ∈ {𝐶}𝐷 = 𝐺)
4036, 39oveq12d 7273 . 2 (𝜑 → (∏𝑘 ∈ {𝐴, 𝐵}𝐷 · ∏𝑘 ∈ {𝐶}𝐷) = ((𝐸 · 𝐹) · 𝐺))
4132, 40eqtrd 2778 1 (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 · 𝐹) · 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1084   = wceq 1539  wcel 2108  wne 2942  cun 3881  cin 3882  c0 4253  {csn 4558  {cpr 4560  {ctp 4562  (class class class)co 7255  Fincfn 8691  cc 10800   · cmul 10807  cprod 15543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-prod 15544
This theorem is referenced by:  hgt750lemg  32534
  Copyright terms: Public domain W3C validator