Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjtpsn | Structured version Visualization version GIF version |
Description: The disjoint intersection of an unordered triple and a singleton. (Contributed by AV, 14-Nov-2021.) |
Ref | Expression |
---|---|
disjtpsn | ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4566 | . . 3 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | 1 | ineq1i 4142 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) |
3 | disjprsn 4650 | . . . . 5 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅) | |
4 | 3 | 3adant3 1131 | . . . 4 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅) |
5 | disjsn2 4648 | . . . . 5 ⊢ (𝐶 ≠ 𝐷 → ({𝐶} ∩ {𝐷}) = ∅) | |
6 | 5 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → ({𝐶} ∩ {𝐷}) = ∅) |
7 | 4, 6 | jca 512 | . . 3 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → (({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅)) |
8 | undisj1 4395 | . . 3 ⊢ ((({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅) ↔ (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅) | |
9 | 7, 8 | sylib 217 | . 2 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅) |
10 | 2, 9 | eqtrid 2790 | 1 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ≠ wne 2943 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 {csn 4561 {cpr 4563 {ctp 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-tp 4566 |
This theorem is referenced by: disjtp2 4652 cnfldfunALT 20610 cnfldfunALTOLD 20611 |
Copyright terms: Public domain | W3C validator |