MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjtpsn Structured version   Visualization version   GIF version

Theorem disjtpsn 4601
Description: The disjoint intersection of an unordered triple and a singleton. (Contributed by AV, 14-Nov-2021.)
Assertion
Ref Expression
disjtpsn ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅)

Proof of Theorem disjtpsn
StepHypRef Expression
1 df-tp 4520 . . 3 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
21ineq1i 4109 . 2 ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷})
3 disjprsn 4600 . . . . 5 ((𝐴𝐷𝐵𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
433adant3 1130 . . . 4 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
5 disjsn2 4598 . . . . 5 (𝐶𝐷 → ({𝐶} ∩ {𝐷}) = ∅)
653ad2ant3 1133 . . . 4 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐶} ∩ {𝐷}) = ∅)
74, 6jca 516 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) → (({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅))
8 undisj1 4351 . . 3 ((({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅) ↔ (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅)
97, 8sylib 221 . 2 ((𝐴𝐷𝐵𝐷𝐶𝐷) → (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅)
102, 9syl5eq 2806 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  w3a 1085   = wceq 1539  wne 2949  cun 3852  cin 3853  c0 4221  {csn 4515  {cpr 4517  {ctp 4519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2730
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-ne 2950  df-ral 3073  df-rab 3077  df-v 3409  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-sn 4516  df-pr 4518  df-tp 4520
This theorem is referenced by:  disjtp2  4602  cnfldfun  20163
  Copyright terms: Public domain W3C validator