MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjtpsn Structured version   Visualization version   GIF version

Theorem disjtpsn 4719
Description: The disjoint intersection of an unordered triple and a singleton. (Contributed by AV, 14-Nov-2021.)
Assertion
Ref Expression
disjtpsn ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅)

Proof of Theorem disjtpsn
StepHypRef Expression
1 df-tp 4633 . . 3 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
21ineq1i 4208 . 2 ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷})
3 disjprsn 4718 . . . . 5 ((𝐴𝐷𝐵𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
433adant3 1132 . . . 4 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
5 disjsn2 4716 . . . . 5 (𝐶𝐷 → ({𝐶} ∩ {𝐷}) = ∅)
653ad2ant3 1135 . . . 4 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐶} ∩ {𝐷}) = ∅)
74, 6jca 512 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) → (({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅))
8 undisj1 4461 . . 3 ((({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅) ↔ (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅)
97, 8sylib 217 . 2 ((𝐴𝐷𝐵𝐷𝐶𝐷) → (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅)
102, 9eqtrid 2784 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wne 2940  cun 3946  cin 3947  c0 4322  {csn 4628  {cpr 4630  {ctp 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-sn 4629  df-pr 4631  df-tp 4633
This theorem is referenced by:  disjtp2  4720  cnfldfunALT  20956  cnfldfunALTOLD  20957
  Copyright terms: Public domain W3C validator