MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjtpsn Structured version   Visualization version   GIF version

Theorem disjtpsn 4665
Description: The disjoint intersection of an unordered triple and a singleton. (Contributed by AV, 14-Nov-2021.)
Assertion
Ref Expression
disjtpsn ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅)

Proof of Theorem disjtpsn
StepHypRef Expression
1 df-tp 4578 . . 3 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
21ineq1i 4163 . 2 ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷})
3 disjprsn 4664 . . . . 5 ((𝐴𝐷𝐵𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
433adant3 1132 . . . 4 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
5 disjsn2 4662 . . . . 5 (𝐶𝐷 → ({𝐶} ∩ {𝐷}) = ∅)
653ad2ant3 1135 . . . 4 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐶} ∩ {𝐷}) = ∅)
74, 6jca 511 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) → (({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅))
8 undisj1 4409 . . 3 ((({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅) ↔ (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅)
97, 8sylib 218 . 2 ((𝐴𝐷𝐵𝐷𝐶𝐷) → (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅)
102, 9eqtrid 2778 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wne 2928  cun 3895  cin 3896  c0 4280  {csn 4573  {cpr 4575  {ctp 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-sn 4574  df-pr 4576  df-tp 4578
This theorem is referenced by:  disjtp2  4666  hash7g  14393  cnfldfunALT  21306  cnfldfunALTOLD  21319
  Copyright terms: Public domain W3C validator