MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjtpsn Structured version   Visualization version   GIF version

Theorem disjtpsn 4740
Description: The disjoint intersection of an unordered triple and a singleton. (Contributed by AV, 14-Nov-2021.)
Assertion
Ref Expression
disjtpsn ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅)

Proof of Theorem disjtpsn
StepHypRef Expression
1 df-tp 4653 . . 3 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
21ineq1i 4237 . 2 ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷})
3 disjprsn 4739 . . . . 5 ((𝐴𝐷𝐵𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
433adant3 1132 . . . 4 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
5 disjsn2 4737 . . . . 5 (𝐶𝐷 → ({𝐶} ∩ {𝐷}) = ∅)
653ad2ant3 1135 . . . 4 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐶} ∩ {𝐷}) = ∅)
74, 6jca 511 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) → (({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅))
8 undisj1 4485 . . 3 ((({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅) ↔ (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅)
97, 8sylib 218 . 2 ((𝐴𝐷𝐵𝐷𝐶𝐷) → (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅)
102, 9eqtrid 2792 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wne 2946  cun 3974  cin 3975  c0 4352  {csn 4648  {cpr 4650  {ctp 4652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-sn 4649  df-pr 4651  df-tp 4653
This theorem is referenced by:  disjtp2  4741  hash7g  14535  cnfldfunALT  21402  cnfldfunALTOLD  21415  cnfldfunALTOLDOLD  21416
  Copyright terms: Public domain W3C validator