![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjtpsn | Structured version Visualization version GIF version |
Description: The disjoint intersection of an unordered triple and a singleton. (Contributed by AV, 14-Nov-2021.) |
Ref | Expression |
---|---|
disjtpsn | ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4636 | . . 3 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | 1 | ineq1i 4224 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) |
3 | disjprsn 4719 | . . . . 5 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅) | |
4 | 3 | 3adant3 1131 | . . . 4 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅) |
5 | disjsn2 4717 | . . . . 5 ⊢ (𝐶 ≠ 𝐷 → ({𝐶} ∩ {𝐷}) = ∅) | |
6 | 5 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → ({𝐶} ∩ {𝐷}) = ∅) |
7 | 4, 6 | jca 511 | . . 3 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → (({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅)) |
8 | undisj1 4468 | . . 3 ⊢ ((({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅) ↔ (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅) | |
9 | 7, 8 | sylib 218 | . 2 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅) |
10 | 2, 9 | eqtrid 2787 | 1 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ≠ wne 2938 ∪ cun 3961 ∩ cin 3962 ∅c0 4339 {csn 4631 {cpr 4633 {ctp 4635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-sn 4632 df-pr 4634 df-tp 4636 |
This theorem is referenced by: disjtp2 4721 hash7g 14522 cnfldfunALT 21397 cnfldfunALTOLD 21410 cnfldfunALTOLDOLD 21411 |
Copyright terms: Public domain | W3C validator |