MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjtpsn Structured version   Visualization version   GIF version

Theorem disjtpsn 4681
Description: The disjoint intersection of an unordered triple and a singleton. (Contributed by AV, 14-Nov-2021.)
Assertion
Ref Expression
disjtpsn ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅)

Proof of Theorem disjtpsn
StepHypRef Expression
1 df-tp 4596 . . 3 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
21ineq1i 4173 . 2 ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷})
3 disjprsn 4680 . . . . 5 ((𝐴𝐷𝐵𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
433adant3 1133 . . . 4 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
5 disjsn2 4678 . . . . 5 (𝐶𝐷 → ({𝐶} ∩ {𝐷}) = ∅)
653ad2ant3 1136 . . . 4 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐶} ∩ {𝐷}) = ∅)
74, 6jca 513 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) → (({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅))
8 undisj1 4426 . . 3 ((({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅) ↔ (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅)
97, 8sylib 217 . 2 ((𝐴𝐷𝐵𝐷𝐶𝐷) → (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅)
102, 9eqtrid 2789 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wne 2944  cun 3913  cin 3914  c0 4287  {csn 4591  {cpr 4593  {ctp 4595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-ral 3066  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-sn 4592  df-pr 4594  df-tp 4596
This theorem is referenced by:  disjtp2  4682  cnfldfunALT  20825  cnfldfunALTOLD  20826
  Copyright terms: Public domain W3C validator