|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > disjtpsn | Structured version Visualization version GIF version | ||
| Description: The disjoint intersection of an unordered triple and a singleton. (Contributed by AV, 14-Nov-2021.) | 
| Ref | Expression | 
|---|---|
| disjtpsn | ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-tp 4631 | . . 3 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | 1 | ineq1i 4216 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) | 
| 3 | disjprsn 4714 | . . . . 5 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅) | |
| 4 | 3 | 3adant3 1133 | . . . 4 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅) | 
| 5 | disjsn2 4712 | . . . . 5 ⊢ (𝐶 ≠ 𝐷 → ({𝐶} ∩ {𝐷}) = ∅) | |
| 6 | 5 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → ({𝐶} ∩ {𝐷}) = ∅) | 
| 7 | 4, 6 | jca 511 | . . 3 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → (({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅)) | 
| 8 | undisj1 4462 | . . 3 ⊢ ((({𝐴, 𝐵} ∩ {𝐷}) = ∅ ∧ ({𝐶} ∩ {𝐷}) = ∅) ↔ (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅) | |
| 9 | 7, 8 | sylib 218 | . 2 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷}) = ∅) | 
| 10 | 2, 9 | eqtrid 2789 | 1 ⊢ ((𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ≠ wne 2940 ∪ cun 3949 ∩ cin 3950 ∅c0 4333 {csn 4626 {cpr 4628 {ctp 4630 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-sn 4627 df-pr 4629 df-tp 4631 | 
| This theorem is referenced by: disjtp2 4716 hash7g 14525 cnfldfunALT 21379 cnfldfunALTOLD 21392 cnfldfunALTOLDOLD 21393 | 
| Copyright terms: Public domain | W3C validator |